基于混合深度学习的燃气轮机动态过程关键参数在线辨识

Hybrid deep learning-based online identification method for key parameters of gas turbine dynamic process

  • 摘要:
      目的  为克服燃气轮机非线性时变特性对动态控制及性能监测的影响,通过长短期记忆神经网络(LSTM)的时序记忆、非线性关系表达与高斯过程回归(GPR)的区间概率估计能力三者的结合,提出一种基于LSTM-GPR混合深度学习模型的关键动态参数在线辨识算法。
      方法  首先,建立燃气轮机的动态机理模型,以燃料热值、压气机效率及负载电力矩为待辨识参数,生成大量训练数据;然后,构建LSTM-GPR参数辨识网络模型,并输入训练数据进行网络训练和权重系数学习;最后,使用训练好的LSTM-GPR混合模型对燃气轮机动态运行参数进行在线辨识,经分析辨识结果来验证所提算法的有效性。
      结果  仿真结果表明,所提算法辨识结果准确,误差小于1%,实时性好,相比于LSTM单一模型能获得更好的均值估计效果,并给出可靠的结果置信区间。
      结论  所提算法能有效应用于燃气轮机模型的关键动态参数在线辨识,为进一步应用于实际机组奠定了基础。

     

    Abstract:
      Objective  In order to overcome the influence of the nonlinear time-varying characteristics of gas turbines on dynamic control and performance monitoring, this paper combines the time series memory and nonlinear relation expression ability of a long short-term memory neural network (LSTM) with the interval probability estimation ability of Gaussian process regression (GPR) to propose an online parameter identification algorithm for the key dynamic parameters of gas turbines based on an LSTM and GPR-based hybrid deep learning model (LSTM-GPR).
      Methods  First, the dynamic mechanism model of a gas turbine is established, and a large amount of training data is generated by taking fuel calorific value, compressor efficiency and load power moment as the parameters to be identified. Next, the parameter identification network model of LSTM-GPR is constructed, and the training data is input for network training and weight coefficient learning. Finally, the trained LSTM-GPR hybrid deep learning model is used to identify the dynamic operating parameters of the gas turbine model online, and the identification results are analyzed to verify the effectiveness of the proposed algorithm.
      Results  The simulation results show that the online identification results of the proposed LSTM-GPR hybrid model algorithm are accurate, with a recognition error of less than 1% and good real-time performance. Compared with the LSTM single model, the proposed algorithm can obtain a better mean estimation effect and provide a reliable confidence interval range.
      Conclusions  The LSTM-GPR hybrid algorithm can be effectively applied to the online parameter identification of a gas turbine model, laying a foundation for its further application to the dynamic operation parameter identification of practical units.

     

/

返回文章
返回