伍勇, 郭有松, 洪明. 基于正交设计的黏滞流体阻尼器性能仿真及参数分析[J]. 中国舰船研究, 2021, 16(3): 164–169, 206. doi: 10.19693/j.issn.1673-3185.01872
引用本文: 伍勇, 郭有松, 洪明. 基于正交设计的黏滞流体阻尼器性能仿真及参数分析[J]. 中国舰船研究, 2021, 16(3): 164–169, 206. doi: 10.19693/j.issn.1673-3185.01872
WU Y, GUO Y S, HONG M. Performance simulation and parameter analysis of viscous fluid damper based on orthogonal design[J]. Chinese Journal of Ship Research, 2021, 16(3): 164–169, 206. doi: 10.19693/j.issn.1673-3185.01872
Citation: WU Y, GUO Y S, HONG M. Performance simulation and parameter analysis of viscous fluid damper based on orthogonal design[J]. Chinese Journal of Ship Research, 2021, 16(3): 164–169, 206. doi: 10.19693/j.issn.1673-3185.01872

基于正交设计的黏滞流体阻尼器性能仿真及参数分析

Performance simulation and parameter analysis of viscous fluid damper based on orthogonal design

  • 摘要:
      目的  研究黏滞流体阻尼器工作时的内部流场分布规律、开孔半径、开孔长度、开孔个数以及活塞直径对阻尼系数和速度指数影响的敏感度。
      方法  通过正交设计得到参数设计方案,采用FLUENT软件进行流场仿真计算,以得到流场分布规律及各方案的阻尼系数和速度指数,并计算各结构参数对两者的影响程度。
      结果  计算结果表明,黏滞流体阻尼器的内部流场分布基本符合平行平板、圆管内的定常层流运动分布规律。各结构参数对阻尼系数和速度指数的影响程度依次为:开孔半径˃活塞直径˃开孔个数˃开孔长度;开孔半径˃开孔个数˃开孔长度˃活塞直径。
      结论  采用正交设计并结合FLUENT流场仿真的方法能够最大限度地减少设计方案的数量,可以节约试验成本,缩短设计周期,具有很高的实际应用价值。

     

    Abstract:
      Objectives  This paper investigates the flow field distribution inside a working viscous fluid damper (VFD) , and the sensitivity of the hole radius, hole length, number of holes and piston diameter to the damping coefficient and velocity index.
      Methods  Parameter design schemes are obtained through orthogonal design, and a FLUENT flow field simulation is applied to study the flow field distribution, and calculate the impact degree of structural parameter on the damping coefficient and velocity index of each scheme.
      Results  The results show that the internal flow field distribution basically conforms to the regular distribution of laminar flow in parallel flat plates and tubes, the impact degree of of each factor on the damping coefficient and the velocity is obtained in descending order, i.e. hole radius>piston diameter> number of holes>hole length, and hole radius>number of holes>hole length>piston diameter.
      Conclusions  The combination of orthogonal design and FLUENT flow field simulation can minimize the design scheme, shorten the design cycle, and reduce experimental cost, giving it great significance for practical engineering applications.

     

/

返回文章
返回