朱润凯, 梁前超, 詹海洋, 黄潜龙, 任济民. 潜用双模式SOFC-MGT联合发电系统的设计与仿真[J]. 中国舰船研究, 2018, 13(S1): 147-156. DOI: 10.19693/j.issn.1673-3185.01388
引用本文: 朱润凯, 梁前超, 詹海洋, 黄潜龙, 任济民. 潜用双模式SOFC-MGT联合发电系统的设计与仿真[J]. 中国舰船研究, 2018, 13(S1): 147-156. DOI: 10.19693/j.issn.1673-3185.01388
ZHU Runkai, LIANG Qianchao, ZHAN Haiyang, HUANG Qianlong, REN Jimin. Design and simulation of submarine dual-mode SOFC-MGT hybrid power generation system[J]. Chinese Journal of Ship Research, 2018, 13(S1): 147-156. DOI: 10.19693/j.issn.1673-3185.01388
Citation: ZHU Runkai, LIANG Qianchao, ZHAN Haiyang, HUANG Qianlong, REN Jimin. Design and simulation of submarine dual-mode SOFC-MGT hybrid power generation system[J]. Chinese Journal of Ship Research, 2018, 13(S1): 147-156. DOI: 10.19693/j.issn.1673-3185.01388

潜用双模式SOFC-MGT联合发电系统的设计与仿真

Design and simulation of submarine dual-mode SOFC-MGT hybrid power generation system

  • 摘要:
      目的  固体氧化物燃料电池—微型燃气轮机(SOFC-MGT)联合发电系统有利于提高常规动力潜艇的续航力和隐蔽性,为分析该系统在不同运行模式下的性能特性,
      方法  利用Matlab/Simulink软件对燃料电池AIP动力装置加以改进,并与微型燃气轮机(MGT)组成顶层循环联合发电系统。根据潜艇的航行状态,提出动力装置的双工作模式。建立SOFC-MGT联合发电系统和尾气处理系统的仿真模型,分析其在设计点工况下的性能指标,以及电流、水碳比、甲烷(CH4)流量、空气组分等因素对系统性能的影响。
      结果  仿真结果验证了模型的有效性和可行性,2种工作模式下系统的发电效率分别为59.48%和61.61%,最大功率分别为217 kW和223 kW,其中模式2状态下的系统净功率更高。该联合发电系统在潜艇不同工况下均可保持稳定的输出功率和较高的发电效率,其性能明显优于其他AIP装置。
      结论  研究成果可为SOFC-MGT联合发电系统在常规动力潜艇上的应用提供理论支撑。

     

    Abstract:
      Objectives   Solid Oxide Fuel Cell-Micro Gas Turbine(SOFC-MGT) hybrid power generation system will help to improve the endurance and stealth of conventionally powered submarines. So in order to analyze the performance characteristics of this system in different operating modes,
      Methods   the fuel cell AIP system improved by Matlab/Simulink is combined with Micro Gas Turbine(MGT)to form a top-level cyclic hybrid power generation system in this paper. And the dual-mode is proposed according to the sailing state of the submarine. The simulation model of SOFC-MGT hybrid power generation system and exhaust treatment system is established to analyze the performance indicators under design conditions, as well as the influences of current, water-carbon ratio, CH4 flow rate, air component and other factors on the system performance.
      Results   The simulation results verify the validity and feasibility of the model; in these two modes, the power generation efficiency is 59.48% and 61.61%, and the maximum power is 217 kW and 223 kW, where the system net power in the mode 2 is higher. The submarine dual-mode SOFC-MGT hybrid power system can maintain stable output power and high power generation efficiency under different working conditions of the submarine, achieving obviously better performance than other AIP systems.
      Conclusions   This study results can provide theoretical support for the application of SOFC-MGT hybrid power generation system to conventional submarines.

     

/

返回文章
返回