Citation: | LI T C, ZHOU Y A, PEI Z Y, et al. Intelligent airflow control technology for microbubble drag reduction based on improved ant colony optimization algorithm[J]. Chinese Journal of Ship Research, 2024, 19(5): 35–42 (in Chinese). DOI: 10.19693/j.issn.1673-3185.03498 |
In order to improve the actual efficiency of microbubble drag reduction technology, this study develops intelligent airflow control technology for microbubble drag reduction based on an improved ant colony optimization (ACO) algorithm.
Based on the mechanism of microbubble drag reduction, the ideal optimal airflow rate at different speeds is obtained by carrying out microbubble drag reduction tests on a self-developed ship model prototype. The software system of intelligent airflow control technology is developed by employing the improved ACO algorithm. A self-propelled test on a ship model installed with an intelligent control hardware system is carried out to verify the actual drag reduction effect of this technology.
The technology proposed in this study can effectively control the airflow to reach the optimal microbubble drag reduction condition, and can also monitor the speed change and adaptively control the airflow to achieve the best drag reduction conditions at various speeds.
This technique improves the automation and intelligence level of microbubble drag reduction technology while enhancing its actual efficacy.
[1] |
中国船级社. 船舶能量消耗分布与节能指南: GD 18−2014[S]. 北京: 中国船级社, 2014.
China Classification Society. Guidelines for energy consumption distribution and energy conservation of ships: GD 18-2014[S]. Beijing: China Classification Society, 2014 (in Chinese).
|
[2] |
秦声雷, 侯国祥, 郭文强, 等. 基于格子Boltzmann方法的液润表面减阻规律[J]. 中国舰船研究, 2021, 16(5): 163–171,196. doi: 10.19693/j.issn.1673-3185.02168
QIN S L, HOU G X, GUO W Q, et al. The drag reduction mechanism of liquid-infused surface based on lattice Boltzmann method[J]. Chinese Journal of Ship Research, 2021, 16(5): 163–171,196 (in both Chinese and English). doi: 10.19693/j.issn.1673-3185.02168
|
[3] |
秦世杰, 季盛, 孙帅, 等. 船舶气体润滑减阻应用现状及展望[J]. 中国舰船研究, 2023, 18(6): 1–10. doi: 10.19693/j.issn.1673-3185.03101
QIN S J, JI S, SUN S, et al. Current state and prospects on applications of ship drag reduction using air lubrication[J]. Chinese Journal of Ship Research, 2023, 18(6): 1–10 (in Chinese). doi: 10.19693/j.issn.1673-3185.03101
|
[4] |
MCCORMICK M E, BHATTACHARYYA R. Drag reduction of a submersible hull by electrolysis[J]. Naval Engineers Journal, 1973, 85(2): 11–16. doi: 10.1111/j.1559-3584.1973.tb04788.x
|
[5] |
董文才, 郭日修, 朱凤荣, 等. 平板湍流边界层内气泡流流动实验研究[J]. 海军工程大学学报, 2001, 13(3): 34–37. doi: 10.3969/j.issn.1009-3486.2001.03.008
DONG W C, GUO R X, ZHU F R, et al. Experimental study of bubbly flow in a turbulent boundary layer of flat plate[J]. Journal of Naval University of Engineering, 2001, 13(3): 34–37 (in Chinese). doi: 10.3969/j.issn.1009-3486.2001.03.008
|
[6] |
姚琰, 罗金玲, 朱坤, 等. 利用微气泡减小平板湍流摩阻实验研究[J]. 气体物理, 2017, 2(4): 29–35. doi: 10.19527/j.cnki.2096-1642.2017.04.003
YAO Y, LUO J L, ZHU K, et al. Experimental study of turbulent drag reduction on a plate using microbubbles[J]. Physics of Gases, 2017, 2(4): 29–35 (in Chinese). doi: 10.19527/j.cnki.2096-1642.2017.04.003
|
[7] |
高丽瑾, 陈少峰, 恽秋琴, 等. 气层减阻技术关键因素影响研究[J]. 中国造船, 2018, 59(4): 1–13. doi: 10.3969/j.issn.1000-4882.2018.04.001
GAO L J, CHEN S F, YUN Q Q, et al. Research on influence factors in air layer drag reduction technology[J]. Shipbuilding of China, 2018, 59(4): 1–13 (in Chinese). doi: 10.3969/j.issn.1000-4882.2018.04.001
|
[8] |
JANG J H, CHOI S H, AHN S M, et al. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(2): 363–379. doi: 10.2478/IJNAOE-2013-0185
|
[9] |
FERRANTE A, ELGHOBASHI S. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles[J]. Journal of Fluid Mechanics, 2004, 503: 345–355. doi: 10.1017/S0022112004007943
|
[10] |
WANG T S, SUN T Z, WANG C, et al. Large eddy simulation of microbubble drag reduction in fully developed turbulent boundary layers[J]. Journal of Marine Science and Engineering, 2020, 8(7): 524. doi: 10.3390/jmse8070524
|
[11] |
赵晓杰, 宗智, 姜宜辰. 基于OpenFOAM的平板微气泡减阻数值分析[J]. 船舶力学, 2020, 24(8): 989–996. doi: 10.3969/j.issn.1007-7294.2020.08.003
ZHAO X J, ZONG Z, JIANG Y C. Numerical analysis of micro-bubble drag reduction of plates using OpenFOAM[J]. Journal of Ship Mechanics, 2020, 24(8): 989–996 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.08.003
|
[12] |
NAGAMATSU T, KODAMA Y, KAKUGAWA A, et al. A full-scale experiment on microbubbles for skin friction reduction using "SEIUN MARU": part 2: the full-scale experiment[J]. Journal of the Society of Naval Architects of Japan, 2002, 2002(192): 15–28. doi: 10.2534/jjasnaoe1968.2002.15
|
[13] |
GIERNALCZYK M, KAMINSKI P. Assessment of the propulsion system operation of the ships equipped with the air lubrication system[J]. Sensors, 2021, 21(4): 1357. doi: 10.3390/s21041357
|
[14] |
DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1): 29–41. doi: 10.1109/3477.484436
|
[15] |
ZHANG C, ZHANG D, ZHANG M Y, et al. A three-dimensional ant colony algorithm for multi-objective ice routing of a ship in the Arctic area[J]. Ocean Engineering, 2022, 266: 113241. doi: 10.1016/j.oceaneng.2022.113241
|
[16] |
王健, 陈立. 舰船总布置中的综合评估模型及其应用研究[J]. 中国舰船研究, 2010, 5(1): 19–23, 38. doi: 10.3969/j.issn.1673-3185.2010.01.005
WANG J, CHEN L. Comprehensive assessment model and its application to general arrangement of ships[J]. Chinese Journal of Ship Research, 2010, 5(1): 19–23, 38 (in Chinese). doi: 10.3969/j.issn.1673-3185.2010.01.005
|
[17] |
许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45(1): 111–139. doi: 10.6052/1000-0992-15-006
XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(1): 111–139 (in Chinese). doi: 10.6052/1000-0992-15-006
|
[18] |
PAIK B G, YIM G T, KIM K Y, et al. The effects of microbubbles on skin friction in a turbulent boundary layer flow[J]. International Journal of Multiphase Flow, 2016, 80: 164–175. doi: 10.1016/j.ijmultiphaseflow.2015.12.003
|