Volume 16 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
QIAN J C, CHENG Y S, ZHANG J L. Multi-fidelity sequential constraint updating optimization approach based on confidence intervals and its application[J]. Chinese Journal of Ship Research, 2021, 16(4): 37–43 doi: 10.19693/j.issn.1673-3185.02025
Citation: QIAN J C, CHENG Y S, ZHANG J L. Multi-fidelity sequential constraint updating optimization approach based on confidence intervals and its application[J]. Chinese Journal of Ship Research, 2021, 16(4): 37–43 doi: 10.19693/j.issn.1673-3185.02025

Multi-fidelity sequential constraint updating optimization approach based on confidence intervals and its application

doi: 10.19693/j.issn.1673-3185.02025
  • Received Date: 2020-07-04
  • Rev Recd Date: 2020-09-23
  • Available Online: 2021-06-11
  • Publish Date: 2021-08-10
  •   Objectives   This study addresses the problem of time-consuming simulation in the optimization design of underwater structures. Focusing on time-consuming and non-time-consuming targets and constraints, it proposes an optimization method for constrained sequential surrogate models in the case of multi-fidelity data sources.  Methods   A multi-fidelity sequential constraint updating optimization approach based on confidence intervals and the Co-Kriging surrogate model (MF-SCU-CI) is proposed. The Co-H function is established to take into consideration the uncertainty of the surrogate model and the correlation degree and time consumption ratio of the high/low fidelity model. Three typical numerical test functions and an engineering example of longitudinal and transverse stiffened conical shell structure for vibration optimization are then tested.  Results   The results demonstrate that the feasibility ratio and effectiveness of the MF-SCU-CI method are better than those of the existing SCU-CI method. In addition, the MF-SCU-CI method can further reduce the number of simulation runs.  Conclusions  The proposed MF-SCU-CI method shows great potential for practical simulation-based engineering design optimization.
  • loading
  • [1]
    WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370–380. doi: 10.1115/1.2429697
    [2]
    FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1/2/3): 50–79.
    [3]
    PEHERSTORFER B, WILLCOX K, GUNZBURGER M. Survey of multifidelity methods in uncertainty propagation, inference, and optimization[J]. SIAM Review, 2018, 60(3): 550–591. doi: 10.1137/16M1082469
    [4]
    SHI R H, LIU L, LONG T, et al. Multi-fidelity modeling and adaptive co-Kriging-based optimization for all-electric geostationary orbit satellite systems[J]. Journal of Mechanical Design, 2020, 142(2): 021404. doi: 10.1115/1.4044321
    [5]
    赵留平, 詹大为, 程远胜, 等. 船舶结构优化设计技术研究进展[J]. 中国舰船研究, 2014, 9(4): 1–10. doi: 10.3969/j.issn.1673-3185.2014.04.001

    ZHAO L P, ZHAN D W, CHENG Y S, et al. Review on optimum design methods of ship structures[J]. Chinese Journal of Ship Research, 2014, 9(4): 1–10 (in Chinese). doi: 10.3969/j.issn.1673-3185.2014.04.001
    [6]
    郑少平, 陈静, 程远胜, 等. 代理模型技术及其在船舶板架强度和稳定性计算中的应用[J]. 中国造船, 2013, 54(1): 40–51. doi: 10.3969/j.issn.1000-4882.2013.01.007

    ZHENG S P, CHEN J, CHENG Y S, et al. Surrogate models and their application in calculation of strength and stability of ship grillage[J]. Shipbuilding of China, 2013, 54(1): 40–51 (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.01.007
    [7]
    夏志, 刘均, 程远胜. 基于代理模型的水下结构物基座阻抗特性快速预报[J]. 中国舰船研究, 2020, 15(3): 81–87.

    XIA Z, LIU J, CHENG Y S. Fast prediction of mechanical impedance of an underwater foundation based on surrogate models[J]. Chinese Journal of Ship Research, 2020, 15(3): 81–87 (in Chinese).
    [8]
    QIAN J C, YI J X, CHENG Y S, et al. A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem[J]. Engineering with Computers, 2020, 36(3): 993–1009. doi: 10.1007/s00366-019-00745-w
    [9]
    HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31–47. doi: 10.1016/j.cja.2019.05.001
    [10]
    JIANG P, CHENG J, ZHOU Q, et al. Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations[J]. AIAA Journal, 2019, 57(12): 5416–5430. doi: 10.2514/1.J058283
    [11]
    YI J X, LIU J, CHENG Y S. A fast forecast method based on high and low fidelity surrogate models for strength and stability of stiffened cylindrical shell with variable ribs[C]//Proceedings of the 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications. Wuhan: IEEE, 2018: 1–6.
    [12]
    宋保维, 王新晶, 王鹏. 基于变保真度模型的AUV流体动力参数预测[J]. 机械工程学报, 2017, 53(18): 176–182. doi: 10.3901/JME.2017.17.176

    SONG B W, WANG X J, WANG P. Predictions of AUV's hydrodynamic parameters based on variable-fidelity modeling[J]. Journal of Mechanical Engineering, 2017, 53(18): 176–182 (in Chinese). doi: 10.3901/JME.2017.17.176
    [13]
    姜哲, 崔维成, 黄小平. 基于响应面的可变复杂度方法在桁架式Spar平台方案设计中的应用[J]. 船舶力学, 2010, 14(7): 771–781. doi: 10.3969/j.issn.1007-7294.2010.07.010

    JIANG Z, CUI W C, HUANG X P. Response surface based variable-complexity method for optimization of truss Spar concept design[J]. Journal of Ship Mechanics, 2010, 14(7): 771–781 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.07.010
    [14]
    张守慧, 谢玲玲, 冯佰威, 等. 基于变复杂度方法的船舶型线优化[J]. 船舶工程, 2018, 40(3): 5–9.

    ZHANG S H, XIE L L, FENG B W, et al. Ship profile optimization based on variable complexity method[J]. Ship Engineering, 2018, 40(3): 5–9 (in Chinese).
    [15]
    KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1): 1–13. doi: 10.1093/biomet/87.1.1
    [16]
    LV Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers & Mathematics with Applications, 2015, 70(5): 1182–1197.
    [17]
    WANG Z L, IERAPETRITOU M. Constrained optimization of black-box stochastic systems using a novel feasibility enhanced Kriging-based method[J]. Computers & Chemical Engineering, 2018, 118: 210–223.
    [18]
    QIAN J C, YI J X, ZHANG J L, et al. An entropy weight-based lower confidence bounding optimization approach for engineering product design[J]. Applied Sciences, 2020, 10(10): 3554. doi: 10.3390/app10103554
    [19]
    刘东, 王春旭, 刘均, 等. 纵横加筋圆锥壳振动特性多目标优化设计[J]. 中国舰船研究, 2018, 13(1): 24–30. doi: 10.3969/j.issn.1673-3185.2018.01.004

    LIU D, WANG C X, LIU J, et al. Multi-objective optimization design for vibration characteristics of longitudinal and transverse stiffened conical shells[J]. Chinese Journal of Ship Research, 2018, 13(1): 24–30 (in Chinese). doi: 10.3969/j.issn.1673-3185.2018.01.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (106) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return