DU X J, LIAO Z Q, LI Z, et al. Influence of ship motion on radar cross section probability density under grazing incidence[J]. Chinese Journal of Ship Research, 2023, 18(2): 211–217. DOI: 10.19693/j.issn.1673-3185.02436
Citation: DU X J, LIAO Z Q, LI Z, et al. Influence of ship motion on radar cross section probability density under grazing incidence[J]. Chinese Journal of Ship Research, 2023, 18(2): 211–217. DOI: 10.19693/j.issn.1673-3185.02436

Influence of ship motion on radar cross section probability density under grazing incidence

More Information
  • Received Date: June 30, 2021
  • Revised Date: September 20, 2021
  • Official website online publication date: September 29, 2021
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Changes in attitude caused by sailing motion will lead to changes in the probability density of the radar cross section (RCS) of a ship. As such, it is necessary to master the influence degree of various motion conditions on the probability density of the RCS of a ship under grazing incidence.
      Method  Using the quasi-static method, a hydrodynamic and electromagnetic scattering characteristic co-simulation model and calculation process are constructed. A 10 GHz continuous wave at grazing incidence is selected as the radar detection wave threat, and the RCS probability distributions of the ship's body under different statistical times, sea states, speeds, headings and other parameters are compared and analyzed.
      Result  A lognormal distribution model is used to simulate the distribution characteristics of the static RCS of the ship model. The probability distribution of the dynamic RCS is basically stable when the statistical time is longer than 250 seconds. There exists a "burr" phenomenon in the dynamic RCS probability distribution curve under low sea states, following waves or beam sea drifting conditions.
      Conclusion  The effects of the ship's speed on its RCS probability density distribution can be ignored. The influence of the sea wave direction angle on the RCS probability density distribution is obvious only in high sea states. The increase of the sea state makes the RCS distribution probability curve increasingly smooth. Statistical time has a great influence on the RCS probability density distribution, so it is necessary to accumulate sufficient data to carry out a test or simulation that can provide an accurate grasp of a ship's RCS probability distribution characteristics.
  • [1]
    许小剑, 姜丹, 李晓飞. 时变海面舰船目标动态雷达特征信号模型[J]. 系统工程与电子技术, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09

    XU X J, JIANG D, LI X F. Modeling of dynamic radar signatures for ships on time-varying sea surface[J]. Sys-tems Engineering and Electronics, 2011, 33(1): 42–47 (in Chinese). doi: 10.3969/j.issn.1001-506X.2011.01.09
    [2]
    KIM K, KIM J H, KIM Y H, et al. Numerical investigation on dynamic radar cross section of naval ship considering ocean wave-induced motion[J]. Progress in Electromagnetics Research M, 2012, 27(2): 11–26.
    [3]
    陈世春, 黄沛霖, 姬金祖. 从探测概率的角度评价飞机的隐身性能[J]. 航空学报, 2015, 36(4): 1150–1161.

    CHEN S C, HUANG P L, JI J Z. Evaluating aircraft's stealth performance from the perspective of detection prob-ability[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1150–1161 (in Chinese).
    [4]
    沈鹏. 海面舰船RCS起伏分布模型研究[J]. 指挥控制与仿真, 2019, 41(4): 37–39. doi: 10.3969/j.issn.1673-3819.2019.04.008

    SHEN P. RCS fluctuation distribution models research of ship target on sea[J]. Command Control & Simulate, 2019, 41(4): 37–39 (in Chinese). doi: 10.3969/j.issn.1673-3819.2019.04.008
    [5]
    戴崇, 徐振海, 肖顺平. 雷达目标动静态RCS特性差异分析[J]. 信号处理, 2013, 29(9): 1256–1263. doi: 10.3969/j.issn.1003-0530.2013.09.025

    DAI C, XU Z H, XIAO S P. Analysis for differences between dynamic and static RCS characteristics of radar target[J]. Journal of Signal Processing, 2013, 29(9): 1256–1263 (in Chinese). doi: 10.3969/j.issn.1003-0530.2013.09.025
    [6]
    庄亚强, 张晨新, 周超, 等. 飞机动态RCS序列的仿真研究[J]. 电光与控制, 2014, 21(7): 103–106. doi: 10.3969/j.issn.1671-637X.2014.07.023

    ZHUANG Y Q, ZHANG C X, ZHOU C, et al. Simulation of dynamic RCS series of aircraft[J]. Electronics Optics & Control, 2014, 21(7): 103–106 (in Chinese). doi: 10.3969/j.issn.1671-637X.2014.07.023
    [7]
    晏青, 熊峻江, 游思明. 基于动态RCS的无人机航迹实时规划[J]. 北京航空航天大学学报, 2011, 37(9): 1115–1121.

    YAN Q, JUN J J, YOU S M. Real-time programming method for flight path of unmanned vehicle based on dynamic RCS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1115–1121 (in Chinese).
    [8]
    薛丰利, 黄沛霖, 罗蒙浩, 等. 指挥台围壳雷达隐身性数值模拟[J]. 中国舰船研究, 2016, 11(6): 15–21. doi: 10.3969/j.issn.1673-3185.2016.06.003

    XUE F L, HUANG P L, LUO M H, et al. Numerical simulation for the stealth performance of submarine sails[J]. Chinese Journal of Ship Research, 2016, 11(6): 15–21 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.003
    [9]
    李抟, 田博, 李铁, 等. 基于RCS起伏模型的箔条云近场实测数据分析方法[J]. 探测与控制学报, 2020, 42(2): 52–55.

    LI T, TIAN B, LI T, et al. Near-field measured data analysis of chaff cloud based on RCS fluctuation model[J]. Journal of Detection & Control, 2020, 42(2): 52–55 (in Chinese).
    [10]
    SHNIDMAN D A. Calculation of probability of detection for log-normal target fluctuations[J]. IEEE Trans-actions on Aerospace and Electronic Systems, 1991, 27(1): 172–174. doi: 10.1109/7.68161
    [11]
    陈世春, 黄沛霖, 姬金祖. 典型隐身飞机的RCS起伏统计特性[J]. 航空学报, 2014, 35(12): 3304–3314.

    CHEN S C, HUANG P L, JI J Z. Radar cross section fluctuation characteristics of typical stealth aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3304–3314 (in Chinese).
    [12]
    CHEN X, ZHU R C, ZHAO J, et al. Study on weakly nonlinear motions of ship advancing in waves and influences of steady ship wave[J]. Ocean Engineering, 2018, 150: 243–257. doi: 10.1016/j.oceaneng.2017.12.053
    [13]
    US navy combatant, DTMB 5415[EB/OL]. 2008. http://www.simman2008.dk/5415/5415_geometry.htm.
    [14]
    ZHANG M, ZHAO Y, LI J X, et al. Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 775–784. doi: 10.1109/TAP.2016.2633066
    [15]
    黄亚林, 张晨新, 刘凯越, 等. 基于动态RCS的隐身目标检测研究[J]. 微波学报, 2017, 33(1): 58–62.

    HUANG Y L, ZHANG C X, LIU K Y, et al. A study on detection of stealth target based on dynamic RCS[J]. Journal of Microwaves, 2017, 33(1): 58–62 (in Chinese).
  • Related Articles

    [1]DU Xiaojia, LI Peng, NI Jiazheng, YAN Hongzhou, SHI Feifei. Analysis of X-band RCS statistical characteristics of ship body in motion state[J]. Chinese Journal of Ship Research, 2023, 18(1): 163-169. DOI: 10.19693/j.issn.1673-3185.02369
    [2]Sun Lei, Luo Xiancheng, Liu Changfeng, Jiang Shengchao. Simulation of ship motions coupled with tank sloshing in frequency domain[J]. Chinese Journal of Ship Research, 2019, 14(1): 9-18. DOI: 10.19693/j.issn.1673-3185.01239
    [3]ZHANG Xiao, YANG Hezhen. 不规则波中船舶参数横摇的概率分析[J]. Chinese Journal of Ship Research, 2015, 10(3): 32-36. DOI: 10.3969/j.issn.1673-3185.2015.03.006
    [4]CAO Ge, LI Xu, ZHANG Yongou, WANG Kang. FPSO液舱晃荡与船舶时域耦合运动数值模拟[J]. Chinese Journal of Ship Research, 2015, 10(1): 88-96. DOI: 10.3969/j.issn.1673-3185.2015.01.013
    [5]SANG Deyi, ZHAO Jianjun, YANG Libin. 航母运动对着舰引导雷达精度的影响[J]. Chinese Journal of Ship Research, 2014, 9(6): 8-13. DOI: 10.3969/j.issn.1673-3185.2014.06.002
    [6]ZOU Jin, YANG Jinglei, JIANG Yi, CUI Tong. Numerical Prediction on the Motion of Trimaran-Planing Boats on Regular Waves[J]. Chinese Journal of Ship Research, 2013, 8(3): 12-15. DOI: 10.3969/j.issn.1673-3185.2013.03.003
    [7]REN Xin, KONG Yan, ZHOU Bisong, ZHANG Kai, MA Li. 改进遗传算法在船用核动力装置概率因果故障诊断中的应用[J]. Chinese Journal of Ship Research, 2013, 8(1): 107-111. DOI: 10.3969/j.issn.1673-3185.2013.01.017
    [8]Hao Weiwei, Zong Zhi, Lin Zhe, Chen Wei. 半潜船概率破舱稳性浅析[J]. Chinese Journal of Ship Research, 2009, 4(4): 12-17,27. DOI: 10.3969/j.issn.1673-3185.2009.04.003
    [9]Wen Hua, Liu Hongyu, Xie Haiyan. 用于反应堆动态概率风险评价的事件序列图研究[J]. Chinese Journal of Ship Research, 2009, 4(1): 60-63,66. DOI: 10.3969/j.issn.1673-3185.2009.01.013
    [10]Fang Chonghua, . Simulation of Radar Cross Section of a Sort of Corrugated Screen[J]. Chinese Journal of Ship Research, 2008, 3(4): 72-74. DOI: 10.3969/j.issn.1673-3185.2008.04.018
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (564) PDF downloads (57) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return