TAO W. Application of game learning system for fighter guidance[J]. Chinese Journal of Ship Research, 2020, 15(Supp 1): 166–172. DOI: 10.19693/j.issn.1673-3185.01937
Citation: TAO W. Application of game learning system for fighter guidance[J]. Chinese Journal of Ship Research, 2020, 15(Supp 1): 166–172. DOI: 10.19693/j.issn.1673-3185.01937

Application of game learning system for fighter guidance

More Information
  • Received Date: April 27, 2020
  • Revised Date: June 16, 2020
  • Official website online publication date: December 07, 2020
© 2020 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  In order to explore the guidance strategy of early warning aircraft (EWA) for fighters through deep reinforcement learning, a game learning system for fighter guidance based on EWA is presented.
      Methods  The game learning system includes a deep learning reinforcement agent, battleground simulation system which can interact with the agent, game management system and distributed training system. For reinforcement learning requires significant interaction with the environment, a distributed training system is introduced to the self-training game platform to improve training efficiency. In the distributed system, the new mechanisms include decoupling the Learner and Actor, the periodic sharing of update gradients among training learners, and selecting the best agents while eliminating invalid agents.
      Results   Through the game learning system, a better EWA guidance strategy can be obtained after games between the blue agent and red agent, thereby enhancing the guidance operational capability of EWA.
      Conclusions  This paper provides a reference for improving the guidance combat capability of early warning aircraft.
  • [1]
    宫颖, 高晓光, 赵峰. 预警机雷达在协同空战中的多目标探测[J]. 火力与指挥控制, 2005, 30(5): 54–58. doi: 10.3969/j.issn.1002-0640.2005.05.016

    GONG Y, GAO X G, ZHAO F. Study of AWACS radar detecting multi-group targets in multi-aircraft cooperative combat[J]. Fire Control and Command Control, 2005, 30(5): 54–58 (in Chinese). doi: 10.3969/j.issn.1002-0640.2005.05.016
    [2]
    董阳, 王瑾, 柏鹏. 预警机引导下的编队协同作战仿真分析[J]. 计算机仿真, 2014, 31(9): 80–83. doi: 10.3969/j.issn.1006-9348.2014.09.018

    DONG Y, WANG J, BAI P. Research on simulation of formation cooperative operation under early warning aircraft guidance[J]. Computer Simulation, 2014, 31(9): 80–83 (in Chinese). doi: 10.3969/j.issn.1006-9348.2014.09.018
    [3]
    张艳霞, 张安, 孙海洋. 预警机指挥引导编队协同对海作战系统建模与仿真[J]. 系统工程与电子技术, 2016, 38(1): 90–95. doi: 10.3969/j.issn.1001-506X.2016.01.15

    ZHANG Y X, ZHANG A, SUN H Y. Research on modeling and simulation of formation cooperation under air early warning command and guidance on the sea battles[J]. Systems Engineering and Electronics, 2016, 38(1): 90–95 (in Chinese). doi: 10.3969/j.issn.1001-506X.2016.01.15
    [4]
    罗爱民, 修胜龙, 罗雪山, 等. 防空导弹网络化作战C4ISR系统体系结构研究[J]. 国防科技大学学报, 2004, 26(6): 86–90. doi: 10.3969/j.issn.1001-2486.2004.06.020

    LUO A M, XIU S L, LUO X S, et al. Research on network-centric operation C4ISR architecture of antiaircraft missile system[J]. Journal of National University of Defense Technology, 2004, 26(6): 86–90 (in Chinese). doi: 10.3969/j.issn.1001-2486.2004.06.020
    [5]
    刘忠, 张秀山, 鄢来斌, 等. 现代军用仿真技术基础[M]. 北京: 国防工业出版社, 2007.

    LIU Z, ZHANG X S, YAN L B, et al. Base of modern military simulation technology[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
    [6]
    SUTTON R S, BARTO A G. Reinforcement learning: an introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1054.
    [7]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [8]
    孙涛, 夏维, 李道飞. 基于模型预测控制的协同式自适应巡航控制系统[J]. 中国机械工程, 2017, 28(4): 486–491. doi: 10.3969/j.issn.1004-132X.2017.04.018

    SUN T, XIA W, LI D F. CACC system based on MPC[J]. China Mechanical Engineering, 2017, 28(4): 486–491 (in Chinese). doi: 10.3969/j.issn.1004-132X.2017.04.018
    [9]
    周来, 靳晓伟, 郑益凯. 基于深度强化学习的作战辅助决策研究[J]. 空天防御, 2018, 1(1): 31–35. doi: 10.3969/j.issn.2096-4641.2018.01.009

    ZHOU L, JIN X W, ZHENG Y K. Researchon operational decision support based on deep reinforcement learning[J]. Air & Space Defense, 2018, 1(1): 31–35 (in Chinese). doi: 10.3969/j.issn.2096-4641.2018.01.009
    [10]
    赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7): 1–6. doi: 10.11896/j.issn.1002-137X.2018.07.001

    ZHAO X Y, DING S F. Research on deep reinforcement learning[J]. Computer Science, 2018, 45(7): 1–6 (in Chinese). doi: 10.11896/j.issn.1002-137X.2018.07.001
    [11]
    刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27. doi: 10.11897/SP.J.1016.2019.00001

    LIU Q, ZHAI J W, ZHANG Z C, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1–27 (in Chinese). doi: 10.11897/SP.J.1016.2019.00001
    [12]
    SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484–489. doi: 10.1038/nature16961
  • Related Articles

    [1]SU Hao, DONG Hao, YIN Wei, HE Hao, LÜ pei, XIE Liang, YIN Erwei, XU Mingliang. Group gaming approaches for maritime equipment: a survey[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04270
    [2]WANG Weisong, WANG Chaoliang, ZHENG Xingyu, QIAN Haining. Ship interactive game collision avoidance decision-making in a heterogeneous traffic environment[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04400
    [3]LI Bowen, LI Jingjing, ZHANG Longjian, ZHAO Wei, ZHAN Zihao, XU Weiyang, YU Minghui. Research on optimal selection strategy of surface-to-air anti-missile kill chain based on mixed swarm evolutionary meta-game[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04217
    [4]HE Shuo, XU Gaohuan, JIN Yuanyuan, LI Yafei, LI Tiantian, WANG Hua, GUO Yibo, LI Lulu, XU Mingliang. Research on dynamic multi-constraint path planning of carrier-based aircraft based on deep reinforcement learning[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04223
    [5]HUI Xin, WANG Ning, WANG Shuai. Local perception-based path planning for unmanned surface vehicles using deep reinforcement learning[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.04390
    [6]QIN Leihong, ZHANG Songtao, NAN Xiaofeng, ZHONG Qiming. Attitude control of catamaran based on deep reinforcement learning[J]. Chinese Journal of Ship Research, 2024, 19(6): 219-227. DOI: 10.19693/j.issn.1673-3185.03492
    [7]YANG Yuanpeng, SONG Lifei, MAO Jiaqi, LI Yi, CHEN Houjing. Unmanned surface vehicle escape strategy based on hybrid sampling deep Q-network[J]. Chinese Journal of Ship Research, 2024, 19(1): 256-263. DOI: 10.19693/j.issn.1673-3185.03105
    [8]CUI Hao, ZHANG Xinyu, WANG Jing, WANG Chengbo, ZHENG Kangjie. Dynamic game collision avoidance decision-making for autonomous and manned ships[J]. Chinese Journal of Ship Research, 2024, 19(1): 238-247. DOI: 10.19693/j.issn.1673-3185.03305
    [9]ZHU Kang, HUANG Zhen, WANG Xuming. Tracking control of intelligent ship based on deep reinforcement learning[J]. Chinese Journal of Ship Research, 2021, 16(1): 105-113. DOI: 10.19693/j.issn.1673-3185.01940
    [10]Yang Erbo, Chen Ming. Optimization Design of Ship Principal Dimensions Based on the Game Theory[J]. Chinese Journal of Ship Research, 2010, 5(6): 46-50. DOI: 10.3969/j.issn.1673-3185.2010.06.009

Catalog

    Article views (616) PDF downloads (63) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return