Citation: | YU R Z, YUAN J P, LI J Y. Adaptive control of large transport ship based on grasshopper optimization algorithm[J]. Chinese Journal of Ship Research, 2023, 18(3): 66–74. DOI: 10.19693/j.issn.1673-3185.02782 |
[1] |
张显库, 韩旭. 船舶运输安全保障下的智能船舶运动控制策略[J]. 中国舰船研究, 2019, 14(增刊 1): 1–6. doi: 10.19693/j.issn.1673-3185.01634
ZHANG X K, HAN X. The motion control strategy for intelligent ships based on ship transportation safeguard[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 1–6 (in Chinese). doi: 10.19693/j.issn.1673-3185.01634
|
[2] |
金仲佳, 司朝善, 邱耿耀, 等. 基于FDLQR的喷流舵船舶航向横摇控制研究[J]. 舰船科学技术, 2020, 42(15): 74–81.
JIN Z J, SI C S, QIU G Y, et al. Research on course and roll control of ship using jet rudder based on FDLQR[J]. Ship Science and Technology, 2020, 42(15): 74–81 (in Chinese).
|
[3] |
BORKOWSKI P. Adaptive system for steering a ship along the desired route[J]. Mathematics, 2018, 6(10): 196. doi: 10.3390/math6100196
|
[4] |
李明聪, 郭晨, 袁毅. 无人运输船舶的直线航迹反步自适应滑模控制[J]. 系统仿真学报, 2018, 30(11): 4448–4453, 4461. doi: 10.16182/j.issn1004731x.joss.201811047
LI M C, GUO C, YUAN Y. Adaptive backstepping sliding mode control for straight line track of unmanned transport ship[J]. Journal of System Simulation, 2018, 30(11): 4448–4453, 4461 (in Chinese). doi: 10.16182/j.issn1004731x.joss.201811047
|
[5] |
LEE S D, YOU S S, XU X, et al. Active control synthesis of nonlinear pitch-roll motions for marine vessels[J]. Ocean Engineering, 2021, 221: 108537. doi: 10.1016/j.oceaneng.2020.108537
|
[6] |
尉明军, 王长青, 徐骋. 基于改进LQR的航向静不稳定飞行器控制方法研究[J]. 控制与信息技术, 2019(4): 85–90.
WEI M J, WANG C Q, XU C. Research on heading statically unstable aircraft control method based on improved LQR[J]. Control and Information Technology, 2019(4): 85–90 (in Chinese).
|
[7] |
MIRJALILI S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(4): 1053–1073. doi: 10.1007/s00521-015-1920-1
|
[8] |
MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80–98. doi: 10.1016/j.advengsoft.2015.01.010
|
[9] |
郝晓弘, 宋吉祥, 周强, 等. 混合策略改进的鲸鱼优化算法[J]. 计算机应用研究, 2020, 37(12): 3622–3626, 3655. doi: 10.19734/j.issn.1001-3695.2019.09.0528
HAO X H, SONG J X, ZHOU Q, et al. Improved whale optimization algorithm based on hybrid strategy[J]. Application Research of Computers, 2020, 37(12): 3622–3626, 3655 (in Chinese). doi: 10.19734/j.issn.1001-3695.2019.09.0528
|
[10] |
SAREMI S, MIRJALILI S, LEWIS A. Grasshopper optimisation algorithm: theory and application[J]. Advances in Engineering Software, 2017, 105: 30–47. doi: 10.1016/j.advengsoft.2017.01.004
|
[11] |
MIRJALILI S Z, MIRJALILI S, SAREMI S, et al. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied Intelligence, 2018, 48(4): 805–820. doi: 10.1007/s10489-017-1019-8
|
[12] |
程泽新, 李东生, 高杨. 基于蝗虫算法的无人机三维航迹规划[J]. 飞行力学, 2019, 37(2): 46–50, 55. doi: 10.13645/j.cnki.f.d.20190118.006
CHENG Z X, LI D S, GAO Y. UAV three-dimensional path planning based on the grasshopper algorithm[J]. Flight Dynamics, 2019, 37(2): 46–50, 55 (in Chinese). doi: 10.13645/j.cnki.f.d.20190118.006
|
[13] |
武颖, 杨胜强, 李文辉, 等. 基于滑模反演的欠驱动水面无人艇航向控制[J]. 科学技术与工程, 2018, 18(1): 47–53. doi: 10.3969/j.issn.1671-1815.2018.01.009
WU Y, YANG S Q, LI W H, et al. Heading control of an underactuated unmanned surface vehicle based on sliding mode and backstepping[J]. Science Technology and Engineering, 2018, 18(1): 47–53 (in Chinese). doi: 10.3969/j.issn.1671-1815.2018.01.009
|
[14] |
茹志鹃. MMG分离建模在舰船操纵性仿真软件开发过程的应用[J]. 舰船科学技术, 2020, 42(22): 172–174.
RU Z J. Application of MMG separation modeling in the development process of ship maneuverability simulation software[J]. Ship Science and Technology, 2020, 42(22): 172–174 (in Chinese).
|
[15] |
SAELID S, JENSSEN N, BALCHEN J. Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control[J]. IEEE Transactions on Automatic Control, 1983, 28(3): 331–339. doi: 10.1109/TAC.1983.1103225
|
[16] |
沈智鹏, 代昌盛, 张宁. 欠驱动船舶自适应迭代滑模轨迹跟踪控制[J]. 交通运输工程学报, 2017, 17(6): 125–134. doi: 10.3969/j.issn.1671-1637.2017.06.014
SHEN Z P, DAI C S, ZHANG N. Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 125–134 (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.06.014
|
[17] |
FOSSEN T I. Handbook of marine craft hydrodynamics and Motion Control[M]. Hoboken: Wiley, 2011.
|
[18] |
刘金琨. 滑模变结构控制MATLAB仿真[M]. 2版. 北京: 清华大学出版社, 2012.
LIU J K. Sliding mode control design and MATLAB simulation[M]. 2nd ed. Beijing: Tsinghua University Press, 2012 (in Chinese).
|
[19] |
赵然, 郭志川, 朱小勇. 一种基于Levy飞行的改进蝗虫优化算法[J]. 计算机与现代化, 2020(1): 104–110. doi: 10.3969/j.issn.1006-2475.2020.01.020
ZHAO R, GUO Z C, ZHU X Y. An improved grasshopper optimization algorithm based on levy flight[J]. Computer and Modernization, 2020(1): 104–110 (in Chinese). doi: 10.3969/j.issn.1006-2475.2020.01.020
|
[20] |
VesselFinder. COSCO SHANGHAI[EB/OL]. (2014-11-13) [2022-12-19]. https://www.vesselfinder.com/ship-photos/75862.
|
[21] |
秦梓荷, 林壮, 李平, 等. 基于LOS导航的欠驱动船舶滑模控制[J]. 中南大学学报(自然科学版), 2016, 47(10): 3605–3611.
QIN Z H, LIN Z, LI P, et al. Sliding-mode control of underactuated ship based on LOS guidance[J]. Journal of Central South University (Science and Technology), 2016, 47(10): 3605–3611 (in Chinese).
|