Volume 15 Issue 6
Dec.  2020
Turn off MathJax
Article Contents

ZHANG W W, XU R W. Review of research on sail hydrodynamic noise and control technology [J]. Chinese Journal of Ship Research, 2020, 15(6): 72–89 doi:  10.19693/j.issn.1673-3185.01816
Citation: ZHANG W W, XU R W. Review of research on sail hydrodynamic noise and control technology [J]. Chinese Journal of Ship Research, 2020, 15(6): 72–89 doi:  10.19693/j.issn.1673-3185.01816

Review of research on sail hydrodynamic noise and control technology

doi: 10.19693/j.issn.1673-3185.01816
  • Received Date: 2019-10-31
  • Accepted Date: 2020-11-10
  • Rev Recd Date: 2020-06-11
  • Available Online: 2020-11-10
  • Publish Date: 2020-12-30
  • The sail is one of the most prominent contributors to the hydrodynamic noise of a submarine. This study seeks to analyze the mechanisms and characteristics of sail hydrodynamic noise, and summarize the characteristics and development trends of its control technology. First, the basic mechanisms and composition of sail hydrodynamic noise are summarized, as well as the research status of the direct radiation noise, secondary noise and cavity noise induced by flow-excitation of sails' opening. The research progress of sail noise control technology is then summarized, including fillet design, "thin foil" sail shape design, cavity noise control, etc. Finally, several aspects of further research on the control of sail hydrodynamic noise are proposed. This paper illustrates the basic mechanisms in the progress of sail hydrodynamic noise control technology. It can provide important reference value for researchers engaging in hydrodynamic noise and ship design.
  • 尚大晶, 李琪, 商德江, 等. 水下翼型结构流噪声实验研究[J]. 声学学报, 2012, 37(4): 416–423.

    SHANG D J, LI Q, SHANG D J, et al. Experimental investigation on flow-induced noise of the underwater hydrofoil structure[J]. Acta Acustica, 2012, 37(4): 416–423 (in Chinese).
    徐尚仁. 潜艇指挥室围壳和尾翼的降噪声隐身[C]//第八届全国船舶水下噪声学术讨论会. 温州: 中国造船工程学会, 2001.

    XU S R. The noise reduction and sound stealth of sails and stern foil of submarine[C]//The Eighth of National Marine Underwater Noise Symposium. Wenzhou: The Chinese Society of Naval Architects and Marine Engineers, 2001 (in Chinese).
    YAO H L, ZHANG H X, LIU H T, et al. Numerical study of flow-excited noise of a submarine with full appendages considering fluid structure interaction using the boundary element method[J]. Engineering Analysis with Boundary Elements, 2017, 77: 1–9. doi:  10.1016/j.enganabound.2016.12.012
    DOZIER D, STOUT M, ZOCCOLA M. Advanced sail development wavelengths[Z]. An Employee Digest of Events and Information, Carderock Division, Naval Surface Warfare Center, 2001: 15-17.
    STOUT M C, DOZIER D F. Advanced submarine sail[G]. Carderock Division, NSWC-Technical Digest, 2011.
    GORSKI J J, COLEMAN R M. Use of RANS calculations in the design of a submarine sail[C]//RTO AVT Symposium. Paris, France: RTO-MP, 2002.
    LIU Y W, LI Y L, SHANG D J. The generation mechanism of the flow-induced noise from a sail hull on the scaled submarine model[J]. Applied Sciences, 2018, 9(1): 106. doi:  10.3390/app9010106
    DOWLING A P. Underwater flow noise[J]. Theoretical and Computational Fluid Dynamics, 1998, 10(1/2/3/4): 135–153. doi:  10.1007/s001620050055
    LIGHTHILL M J. On sound generated aerodynamically. I. general theory[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1952, 122(1107): 564–587.
    CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 231(1187): 505–514.
    WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1969, 264(1151): 321–342.
    HOWE M S. Surface pressures and sound produced by turbulent flow over smooth and rough walls[J]. The Journal of the Acoustical Society of America, 1991, 90(2): 1041–1047. doi:  10.1121/1.402292
    HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437–465. doi:  10.1016/0022-460X(78)90391-7
    POWELL A. Theory of vortex sound[J]. The Journal of the Acoustical Society of America, 1964, 36(1): 177–195. doi:  10.1121/1.1918931
    HOWE M S. Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute[J]. Journal of Fluid Mechanics, 1975, 71(4): 625–673. doi:  10.1017/S0022112075002777
    HARDIN J C. Acoustic sources in the low Mach number turbulent boundary layer[J]. The Journal of the Acoustical Society of America, 1991, 90(2): 1020–1031. doi:  10.1121/1.402290
    KINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4): 741–773. doi:  10.1017/S0022112067001740
    HUERRE P, CRIGHTON D G. Sound generation by instability waves in a low Mach number jet[C]//The 8th Aeroacoustics Conference of American Institute of Aeronautics and Astronautics. Atlanta, GA: AAIA, 1983.
    MANKBADI R, LIU J T C. Sound generated aerodynamically revisited: large-scale structures in a turbulent jet as a source of sound[J]. Philosophical Transactions of the Royal Society A: Mathematical and Physical Sciences, 1984, 311(1516): 183–217.
    LIU Z H, YING X. Numerical simulation on the horseshoe vortex formation around the hull-sail junction of submarine[C]//2010 International Conference on Optoelectronics and Image Processing. Haikou, China: IEEE, 2010.
    SIMPSON R L. Junction flows[J]. Annual Review of Fluid Mechanics, 2001, 33: 415–443. doi:  10.1146/annurev.fluid.33.1.415
    ADJLOUT L, DIXON S L. Endwall losses and flow unsteadiness in a turbine blade cascade[J]. Journal of Turbomachinery, 1992, 114(1): 191–196. doi:  10.1115/1.2927984
    JIMÉNEZ J M, SMITS A J. Tip and junction vortices generated by the sail of a yawed submarine model at low reynolds numbers[J]. Journal of Fluids Engineering, 2011, 133(3): 034501. doi:  10.1115/1.4003651
    俞孟萨, 吴有生, 庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学, 2007, 11(1): 152–158. doi:  10.3969/j.issn.1007-7294.2007.01.019

    YU M S, WU Y S, PANG Y Z. A review of progress for hydrodynamic noise of ships[J]. Journal of Ship Mechanics, 2007, 11(1): 152–158 (in Chinese). doi:  10.3969/j.issn.1007-7294.2007.01.019
    汤渭霖. 水下噪声学原理[M]. 上海: 上海交通大学, 2004.

    TANG W L. Mechanics of underwater noise[M]. Shanghai: Shanghai Jiao Tong University, 2004 (in Chinese).
    ROCKWELL D, NAUDASCHER E. Review—self-sustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering, 1978, 100(2): 152–165. doi:  10.1115/1.3448624
    HANKEY W L, SHANG J S. Analyses of pressure oscillations in an open cavity[J]. AIAA Journal, 1980, 18(8): 892–898.
    ZOCCOLA P J, Jr. Experimental investigation of flow-induced cavity resonance[R]. West Bethesda: Naval Surface Warfare Center Carderock Division, 2000. .
    袁国清. 水下开孔腔体流噪声机理研究[D]. 上海: 上海交通大学, 2015.

    YUAN G Q. Study on acoustic radiation mechanisms of flow-induced underwater open cavity[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese).
    NORTON D A. Investigation of B47 bomb bay buffet[R]. [S. l. ]: Boeing Airplane Co., 1952.
    ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. [S. l. ]: Ministry of Aviation, Royal Aircraft Establishment, RAE Farnborough, 1964.
    HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4): 545–546.
    BILANIN A J, COVERT E E. Estimation of possible excitation frequencies for shallow rectangular cavities[J]. AIAA Journal, 1973, 11(3): 347–351.
    张强. 流动诱导空腔振荡频率方程的改进[J]. 振动工程学报, 2004, 17(1): 53–57. doi:  10.3969/j.issn.1004-4523.2004.01.012

    ZHANG Q. Development of the frequency equation used for prediction of fluid induced pressure oscillation in cavities[J]. Journal of Vibration Engineering, 2004, 17(1): 53–57 (in Chinese). doi:  10.3969/j.issn.1004-4523.2004.01.012
    朱幼君. 管道空腔流声耦合振荡及压电振子流动控制技术的研究[D]. 上海: 上海交通大学, 2010.

    ZHU Y J. Research on acoustic oscillation over the duct cavity and suppression with piezoelectric vibrator[D]. Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese).
    HOWE M S. Edge, cavity and aperture tones at very low Mach numbers[J]. Journal of Fluid Mechanics, 1997, 330: 61–84.
    ELDER S A. Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow[J]. The Journal of the Acoustical Society of America, 1978, 64(3): 877–890.
    SAROHIA V, MASSIER P F. Control of cavity noise[J]. Journal of Aircraft, 1977, 14(9): 833–837.
    EAST L F. Aerodynamically induced resonance in rectangular cavities[J]. Journal of Sound and Vibration, 1966, 3(3): 277–287.
    高岩, 沈琪, 俞孟萨. 弹性腔流激耦合共振及声辐射机理研究[J]. 船舶力学, 2016, 20(8): 1036–1044. doi:  10.3969/j.issn.1007-7294.2016.08.013

    GAO Y, SHEN Q, YU M S. A mechanism study on coupling resonance and acoustic radiation of elastic cavity induced by flow[J]. Journal of Ship Mechanics, 2016, 20(8): 1036–1044 (in Chinese). doi:  10.3969/j.issn.1007-7294.2016.08.013
    YAMOUNI S, SIPP D, JACQUIN L. Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis[J]. Journal of Fluid Mechanics, 2013, 717: 134–165.
    SUN J, YANG G J, LIANG Y, et al. Experimental study of boundary layer effect on the aeroacoustic characteristics of the incompressible open cavity[J]. AASRI Procedia, 2014, 9: 158–164.
    刘俊, 杨党国, 王显圣, 等. 湍流边界层厚度对三维空腔流动的影响[J]. 航空学报, 2016, 37(2): 475–483.

    LIU J, YANG D G, WANG X S, et al. Effect of turbulent boundary layer thickness on a three-dimensional cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 475–483 (in Chinese).
    刘敏, 张宁, 周友明, 等. 不同形式表面开孔水下回转体流噪声特性研究[J]. 中国造船, 2012, 53(2): 12–18.

    LIU M, ZHANG N, ZHOU Y M, et al. Flow-induced noise simulation of two underwater fenestrated revolution bodies[J]. Shipbuilding of China, 2012, 53(2): 12–18 (in Chinese).
    DONG B, YIN H, HAN H Q, et al. Effects of opening on underwater vehicle's resistance and acoustics[C]//2016 International Congress on Computation Algorithms in Engineering, 2016.
    孟生, 张宇文, 李林杰. 潜艇流水孔偏角特性研究[J]. 计算机仿真, 2011, 28(5): 17–20, 25. doi:  10.3969/j.issn.1006-9348.2011.05.005

    MENG S, ZHANG Y W, LI L J. Deflection angle characteristics of water hole on the submarine[J]. Computer Simulation, 2011, 28(5): 17–20, 25 (in Chinese). doi:  10.3969/j.issn.1006-9348.2011.05.005
    FRANKE M E, CARR D L. Effect of geometry on open cavity flow-induced pressure oscillations[C]//2nd Aeroacoustics Conference. Hampton, VA, USA: AAIA, 1976, 45: 297-314.
    ZHANG K, NAGUIB A M. Effect of finite cavity width on flow oscillation in a low-Mach-number cavity flow[J]. Experiments in Fluids, 2011, 51(5): 1209–1229.
    KNOTTS B D, SELAMET A. Suppression of flow-acoustic coupling in sidebranch ducts by interface modification[J]. Journal of Sound and Vibration, 2003, 265(5): 1025–1045.
    朱习剑, 衣云峰, 何祚镛. 突出腔的流激振荡激励源[J]. 哈尔滨船舶工程学院学报, 1994, 15(1): 26–36.

    ZHU X J, YI Y F, HE Z Y. On the source of flow-induced oscillation of protruding cavity[J]. Journal of Harbin Shipbuilding Engineering Institute, 1994, 15(1): 26–36 (in Chinese).
    BLAKE W K. Mechanics of flow-induced sound and vibration. Volume 1, Chapter 3[M]. 2nd ed. Cambridge: Academic Press, 1986: 130-218.
    李环, 刘聪尉, 吴方良, 等. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2): 72–89. doi:  10.3969/j.issn.1673-3185.2016.02.011

    LI H, LIU C W, WU F L, et al. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2): 72–89 (in Chinese). doi:  10.3969/j.issn.1673-3185.2016.02.011
    王春旭, 吴崇建, 陈乐佳, 等. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57–71. doi:  10.3969/j.issn.1673-3185.2016.01.008

    WANG C X, WU C J, CHEN L J, et al. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57–71 (in Chinese). doi:  10.3969/j.issn.1673-3185.2016.01.008
    LI D Q, HALLANDER J, JOHANSSON T. Predicting underwater radiated noise of a full scale ship with model testing and numerical methods[J]. Ocean Engineering, 2018, 161: 121–135.
    黄桥高, 潘光. 水下航行器流噪声特性水洞试验研究[J]. 西北工业大学学报, 2015, 33(1): 141–146. doi:  10.3969/j.issn.1000-2758.2015.01.030

    HUANG Q G, PAN G. Water-tunnel experiment about flow-noise characteristic of underwater vehicle[J]. Journal of Northwestern Polytechnical University, 2015, 33(1): 141–146 (in Chinese). doi:  10.3969/j.issn.1000-2758.2015.01.030
    ABSHAGEN J, SCHÄFER I, WILL C, et al. Coherent flow noise beneath a flat plate in a water tunnel experiment[J]. Journal of Sound and Vibration, 2015, 340: 211–220. doi:  10.1016/j.jsv.2014.11.033
    WANG T K, LU F, FAN X B, et al. A new large cavitation channel in China ship scientific research center[J]. Journal of Hydrodynamics, 2003, 15(4): 59–62.
    ETTER R J, CUTBIRTH J M, CECCIO S L, et al. High reynolds number experimentation in the US Navy's William B Morgan large cavitation channel[J]. Measurement Science and Technology, 2005, 16(9): 1701–1709. doi:  10.1088/0957-0233/16/9/001
    GAO X P, YI B I, MIAO G P. Flow noise measurement of surface ship with towed model[J]. Journal of Hydrodynamics, Ser. B, 2008, 20(6): 784–789. doi:  10.1016/S1001-6058(09)60016-0
    HAIMOV H, GALLEGO V, MOLINELLI E, et al. Propeller acoustic measurements in atmospheric towing tank[J]. Ocean Engineering, 2016, 120: 190–201. doi:  10.1016/j.oceaneng.2015.06.047
    戴绍仕, 姚熊亮. 不同攻角时等高型陷落腔流激振荡特性研究[J]. 中国造船, 2011, 52(1): 5–16. doi:  10.3969/j.issn.1000-4882.2011.01.002

    DAI S S, YAO X L. Research on the chrematistics of fluid induced oscillation of 3D square cave-in cavity at different attack angle[J]. Shipbuilding of China, 2011, 52(1): 5–16 (in Chinese). doi:  10.3969/j.issn.1000-4882.2011.01.002
    ABSHAGEN J, NEJEDL V. Towed body measurements of flow noise from a turbulent boundary layer under sea conditions[J]. The Journal of the Acoustical Society of America, 2014, 135(2): 637–645. doi:  10.1121/1.4861238
    HADDLE G P, SKUDRZYK E J. The physics of flow noise[J]. The Journal of the Acoustical Society of America, 1969, 46(1B): 130–157. doi:  10.1121/1.1911663
    KUDASHEV E B, KOLYSHNITSYN V A, MARSHOV V P, et al. Experimental simulation of hydrodynamic flow noises in an autonomous marine laboratory[J]. Acoustical Physics, 2013, 59(2): 187–196. doi:  10.1134/S1063771013020097
    刘兴章. 美国潜艇水声试验场现状及启示[J]. 舰船科学技术, 2011, 33(2): 140–143. doi:  10.3404/j.issn.1672-7649.2011.02.033

    LIU X Z. Development prospect and revelation of submarine underwater noise test ground of US Navy[J]. Ship Science and Technology, 2011, 33(2): 140–143 (in Chinese). doi:  10.3404/j.issn.1672-7649.2011.02.033
    陈灿. 球形体水下流噪声实验设计及测量方法研究[D]. 北京: 中国舰船研究院, 2016.

    CHEN C. The research on experimental design and measuring methods for underwater flow noise of spheres[D]. Beijing: China Ship Research and Development Academy, 2016 (in Chinese).
    张翰钦, 孙国仓, 郑国垠, 等. 水下开孔结构流激振荡频率特性分析[J]. 浙江大学学报(工学版), 2017, 51(2): 350–357. doi:  10.3785/j.issn.1008973X.2017.02.017

    ZHANG H Q, SUN G C, ZHENG G Y, et al. Analysis of frequency characteristic of underwater flow-induced cavity oscillation[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(2): 350–357 (in Chinese). doi:  10.3785/j.issn.1008973X.2017.02.017
    DEVENPORT W J, AGARWAL N K, DEWITZ M B, et al. Effects of a fillet on the flow past a wing-body junction[J]. AIAA Journal, 1990, 28(12): 2017–2024. doi:  10.2514/3.10517
    DEVENPORT W J, SIMPSON R L, DEWITZ M B, et al. Effects of a leading-edge fillet on the flow past an appendage-body junction[J]. AIAA Journal, 1992, 30(9): 2177–2183. doi:  10.2514/3.11201
    ZESS G A, THOLE K A. Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane[C]//ASME Turbo Expo 2001: Power for Land, Sea, and Air. New Orleans, Louisiana, USA: ASME, 2001.
    GORSKI J J. Marine vortices and their computation[R]. West Bethesda, MD. : Naval Surface Warfare Center Carderock Division, 2003.
    SEIL G J, ANDERSON B. A comparison of submarine fin geometry on the performance of a generic submarine[C]//Pacific 2012 International Maritime Conference. Sydney: [s. n. ], 2012: 80-89.
    TOXOPEUS S, KUIN R, KERKVLIET M, et al. Improvement of resistance and wake field of an underwater vehicle by optimising the fin-body junction flow with CFD[C]//ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA: American Society of Mechanical Engineers, 2014.
    LIN H, FEI S M. Design on the fairwater shape and its influence on the radiation noise of submarines[J]. Journal of Vibroengineering, 2016, 18(8): 5378–5389. doi:  10.21595/jve.2016.16942
    张楠, 吕世金, 沈泓萃, 等. 潜艇围壳线型优化抑制脉动压力与流激噪声的数值模拟研究[J]. 船舶力学, 2014, 18(4): 448–458. doi:  10.3969/j.issn.1007-7294.2014.04.013

    ZHANG N, LYU S J, SHEN H C, et al. Numerical simulation on the effect of fairwater optimization to suppress the wall pressure fluctuations and flow induced noise[J]. Journal of Ship Mechanics, 2014, 18(4): 448–458 (in Chinese). doi:  10.3969/j.issn.1007-7294.2014.04.013
    Goodrich delivers first composite sail cusp for Virginia class submarine[J]. Reinforced Plastics, 2012, 56(4): 7.
    刘大伟, 黄俊, 王英, 等. 翼型参数对旋翼悬停气动噪声特性影响[J]. 沈阳航空航天大学学报, 2016, 33(4): 1–8. doi:  10.3969/j.issn.2095-1248.2016.04.001

    LIU D W, HUANG J, WANG Y, et al. Effects of airfoil parameters on hover rotor aerodynamic acoustic performance[J]. Journal of Shenyang Aerospace University, 2016, 33(4): 1–8 (in Chinese). doi:  10.3969/j.issn.2095-1248.2016.04.001
    卓文涛, 季锃钏, 陈二云, 等. 翼型气动性能与噪声的综合优化设计方法[J]. 动力工程学报, 2012, 32(6): 481–486. doi:  10.3969/j.issn.1674-7607.2012.06.012

    ZHOU W T, JI Z C, CHEN E Y, et al. Comprehensive optimization on aerodynamic and aeroacoustic performance of airfoils[J]. Journal of Chinese Society of Power Engineering, 2012, 32(6): 481–486 (in Chinese). doi:  10.3969/j.issn.1674-7607.2012.06.012
    CREPEL J L. The design of submarine external shape orientated for noise reduction[C]//UDT, 1994: 167-171.
    JOUBERT P N. Some aspects of submarine design. Part 2. shape of a submarine 2026[R]. Australia: Defence Science and Technology Organisation Victoria, 2006.
    ALEMAYEHU D, BOYLE R B, EATON E, et al. Design report guided missile submarine SSG(X): VT total ship systems engineering[R]. Virginia: Virginia Tech Team 3, 2006.
    美国海军下一代核潜艇反应堆技术[EB/OL]. https://k.sina.cn/article_6622567462_18abc5c2600100jhdk.html?from=mil.
    MEHTA R D. Effect of wing nose shape on the flow in a wing/body junction[J]. The Aeronautical Journal, 1984, 88(880): 456–460.
    OLCMEN S M, SIMPSON R L. Influence of wing shapes on surface pressure fluctuations at wing-body junctions[J]. AIAA Journal, 1994, 32(1): 6–15. doi:  10.2514/3.48283
    WEI Q D, WANG J M, CHEN G, et al. Modification of junction flows by altering the section shapes of the cylinders[J]. Journal of Visualization, 2008, 11(2): 115–124. doi:  10.1007/BF03181926
    COHEN E, GLOERFELT X. Influence of pressure gradients on wall pressure beneath a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2018, 838: 715–758. doi:  10.1017/jfm.2017.898
    李鑫, 屈转利, 李耿, 等. 高效低噪的二维翼型优化设计[J]. 振动与冲击, 2017, 36(4): 66–72.

    LI X, QU Z L, LI G, et al. A numerical optimization for high efficiency and low noise airfoils[J]. Journal of Vibration and Shock, 2017, 36(4): 66–72 (in Chinese).
    RENILSON M. Submarine hydrodynamics[M]. Switzerland AG: Springer International Publishing, 2018: 183-205.
    王开春, 马洪林, 赵凡, 等. 围壳形状对潜艇流致噪声的影响计算[J]. 空气动力学学报, 2018, 36(5): 774–779. doi:  10.7638/kqdlxxb-2016.0054

    WANG K C, MA H L, ZHAO F, et al. Numerical simulation for effects of submarine fairwater shape on flow-induced noise[J]. Acta Aerodynamica Sinica, 2018, 36(5): 774–779 (in Chinese). doi:  10.7638/kqdlxxb-2016.0054
    https://www.sohu.com/a/394562797_120593739.
    英海军最新式核攻击潜艇“伏击”号开始处女航[EB/OL](2019-10-01)[2012-09-21]. http://blog.sina.com.cn/s/blog_5214b1d80102e021.html.
    CATTAFESTA III L N, SONG Q, WILLIAMS D R, et al. Active control of flow-induced cavity oscillations[J]. Progress in Aerospace Sciences, 2008, 44(7–8): 479–502. doi:  10.1016/j.paerosci.2008.07.002
    SARNO R L, FRANKE M E. Suppression of flow-induced pressure oscillations in cavities[J]. Journal of Aircraft, 1994, 31(1): 90–96. doi:  10.2514/3.46459
    MENDOZA J, AHUJA K. Cavity noise control through upstream mass injection from a Coanda surface[C]//Aeroacoustics Conference. State College, PA, USA: AIAA, 1996: 1767.
    RONA A. Control of transonic cavity flow instability by streamwise air injection[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004: 682.
    CATTAFESTA III L, GARG S, CHOUDHARI M, et al. Active control of flow-induced cavity resonance [C]//28th Fluid Dynamics Conference. Snowmass Village, CO, USA: AIAA, 1997: 1804.
    MONGEAU L, FRANCHEK M A, KOOK H. Control of interior pressure fluctuations due to flow over vehicle openings[J]. SAE Technical Paper, 1999, 1999-01-1813.
    MICHEAU P, CHATELLIER L, LAUMONIER J, et al. Active control of a self-sustained pressure fluctuation due to flow over a cavity[C]//10th AIAA/CEAS Aeroacoustics Conference. Manchester, Great Britain: AIAA, 2004: 2851.
    DEBIASI M, SAMIMY M. Logic-based active control of subsonic cavity flow resonance[J]. AIAA Journal, 2004, 42(9): 1901–1909. doi:  10.2514/1.4799
    WILLIAMS D, FABRIS D, IWANSKI K, et al. Closed-loop control in cavities with unsteady bleed forcing[C]//38th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA: AAIA, 2000: 470.
    BOLDUC M, ELSAYED M, ZIADA S. Effect of upstream edge geometry on the trapped mode resonance of ducted cavities[C]//ASME 2013 Pressure Vessels and Piping Conference. Paris, France: ASME, 2013.
    OMER A, MOHANY A. Effect of impingement edge geometry on the acoustic resonance excitation and Strouhal numbers in a ducted shallow cavity[J]. Wind and Structures an International Journal, 2016, 23(2): 91–107. doi:  10.12989/was.2016.23.2.091
    宁方立, 宁舜山, 石旭东, 等. 可变形状空腔噪声的数值仿真研究[J]. 振动与冲击, 2018, 37(19): 231–238, 258.

    NING F L, NING S S, SHI X D, et al. Numerical simulation for deformable cavity noise[J]. Journal of Vibration and Shock, 2018, 37(19): 231–238, 258 (in Chinese).
    SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439–1447. doi:  10.2514/1.C033365
    SHAABAN M, MOHANY A. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks[J]. Experiments in Fluids, 2015, 56(4): 72. doi:  10.1007/s00348-015-1908-8
    SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2016, 57(1): 2. doi:  10.1007/s00348-015-2088-2
    梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8): 122932.

    LIANG Y, CHEN Y C, ZHAO K, et al. Experiment investigation on suppression of the aircraft landing gear/bay coupling noise using saw-tooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122932 (in Chinese).
    MCGRATH S F, SHAW JR L L. Active control of shallow cavity acoustic resonance[C]//Fluid Dynamics Conference. New Orleans, LA, USA: AIAA Paper, 1996.
    FLAHERTY W, REEDY T M, ELLIOTT G S, et al. Investigation of cavity flow using fast-response pressure-sensitive paint[J]. AIAA Journal, 2014, 52(11): 2462–2470. doi:  10.2514/1.J052864
    SARPOTDAR S, PANICKAR P, RAMAN G. Cavity tone suppression using a rod in cross flow: Investigation of shear layer stability mechanism[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida: AIAA, 2009.
    SARPOTDAR S, PANICKAR P, RAMAN G. Stability of a hybrid mean velocity profile and its relevance to cavity resonance suppression[J]. Physics of Fluids, 2010, 22(7): 076101. doi:  10.1063/1.3432131
    MARTINEZ M A, ONORATO M. Cavity flow control by a rod in crossflow[J]. Acc Sc Torino Atti Sc Fis, 2009, 143: 55–65.
    MARTINEZ M A, DI CICCA G M, IOVIENO M, et al. Control of cavity flow oscillations by high frequency forcing[J]. Journal of Fluids Engineering, 2012, 134(5): 051201. doi:  10.1115/1.4006468
    MOORE K J, JONES G, NDEFO E. Vortex control in submarine design[C]//Undersea Defense Technology, 2001: 167-171.
    GUPTA A K. Hydrodynamic modification of the horseshoe vortex at a vertical pier junction with ground[J]. The Physics of Fluids, 1987, 30(4): 1213–1215. doi:  10.1063/1.866270
    THÉBERGE M A, EKMEKCI A. Effects of an upstream triangular plate on the wing-body junction flow[J]. Physics of Fluids, 2017, 29(9): 097105. doi:  10.1063/1.5000733
    LIU Z H, XIONG Y, TU C X. The method to control the submarine horseshoe vortex by breaking the vortex core[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(4): 637–645. doi:  10.1016/S1001-6058(14)60070-6
    LIU Z H, YING X, TU C X. Numerical simulation and control of horseshoe vortex around an appendage–body junction[J]. Journal of Fluids and Structures, 2011, 27(1): 23–42. doi:  10.1016/j.jfluidstructs.2010.08.006
    ÖLÇMEN S M, SIMPSON R L. Influence of passive flow-control devices on the pressure fluctuations at wing-body junction flows[J]. Journal of Fluids Engineering, 2007, 129(8): 1030–1037. doi:  10.1115/1.2746917
    WANG J M, BI W T, WEI Q D. Effects of an upstream inclined rod on the circular cylinder-flat plate junction flow[J]. Experiments in Fluids, 2009, 46(6): 1093–1104. doi:  10.1007/s00348-009-0619-4
    王建明, 刘炜, 祝魁, 等. 旋涡发生器对叶片根部马蹄涡的影响[J]. 航空动力学报, 2012, 27(7): 1479–1483.

    WANG J M, LIU W, ZHU K, et al. Effects of vortex generator application on the wing-body juncture horseshoe vortex[J]. Journal of Aerospace Power, 2012, 27(7): 1479–1483 (in Chinese).
    HUANG R F, HSU C M, CHENG T H. Effects of upstream tetrahedron length on flow characteristics around juncture of circular cylinder and flat plate[J]. Experimental Thermal and Fluid Science, 2018, 92: 295–305. doi:  10.1016/j.expthermflusci.2017.12.006
    KANG K J, KIM T, SONG S J. Strengths of horseshoe vortices around a circular cylinder with an upstream cavity[J]. Journal of Mechanical Science and Technology, 2009, 23(7): 1773–1778. doi:  10.1007/s12206-009-0602-2
    THRIFT A A, THOLE K A. Influence of flow injection angle on a leading-edge horseshoe vortex[J]. International Journal of Heat and Mass Transfer, 2012, 55(17–18): 4651–4664. doi:  10.1016/j.ijheatmasstransfer.2012.04.024
    张楠, 沈泓萃, 姚惠之. 潜艇喷流流场数值模拟研究[J]. 船舶力学, 2007, 11(1): 10–21. doi:  10.3969/j.issn.1007-7294.2007.01.002

    ZHANG N, SHEN H C, YAO C Z. Numerical simulation of jet flow around submarine[J]. Journal of Ship Mechanics, 2007, 11(1): 10–21 (in Chinese). doi:  10.3969/j.issn.1007-7294.2007.01.002
    LIU J H, SONG C Y. Efficient suction control of unsteadiness of turbulent wing-plate junction flows[J]. Journal of Hydrodynamics, Ser. B, 2017, 29(2): 353–360. doi:  10.1016/S1001-6058(16)60745-X
    RAIS-ROHANI M, LOKITS J. Reinforcement layout and sizing optimization of composite submarine sail structures[J]. Structural and Multidisciplinary Optimization, 2007, 34(1): 75–90. doi:  10.1007/s00158-006-0066-2
    RAIS-ROHANI M, LOKITS J. Comparison of first- and zeroth-order approaches for reinforcement layout optimization of composite submarine sail structures[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Portsmouth, Virginia: AIAA, 2013.
    JONES D. The modern submarine bridge fin[C]//UDT, 1995: 148-152.
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734–1736. doi:  10.1126/science.289.5485.1734
    张燕妮, 陈克安, 郝夏影, 等. 水声超材料研究进展[J]. 科学通报, 2020, 65(15): 1396–1410. doi:  10.1360/TB-2019-0690

    ZHANG Y N, CHEN K A, HAO X Y, et al. A review of underwater acoustic metamaterials[J]. Chinese Science Bulletin, 2020, 65(15): 1396–1410 (in Chinese). doi:  10.1360/TB-2019-0690
    付思伟, 王琪, 苏琳, 等. 聚合物基水声材料的研究进展[J]. 橡胶工业, 2019, 66(12): 951–956.

    FU S W, WANG Q, SU L, et al. Research progress on polymer-based underwater acoustic materials[J]. China Rubber Industry, 2019, 66(12): 951–956 (in Chinese).
    袁柏华. 抑振去耦复合覆盖层的机理研究、材料改性和实验验证[D]. 上海: 上海交通大学, 2017.

    YUAN B H. Mechanism research, material modification and experimental verification for a damping and decoupling composite acoustic coating[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
    俞孟萨. 治理潜艇指挥台围壳噪声的一些设想[J]. 舰船力学情报, 1992(3): 54–60.

    YU M S. Some ideas on the noise control of submarine sail[J]. Journal of Ship Mechanism Information, 1992(3): 54–60 (in Chinese).
    WANG X Z, ZHANG A M, PANG F Z, et al. Noise reduction analysis for a stiffened finite plate[J]. Journal of Sound and Vibration, 2014, 333(1): 228–245. doi:  10.1016/j.jsv.2013.08.043
    HUANG L Z, XIAO Y, WEN J H, et al. Optimization of decoupling performance of underwater acoustic coating with cavities via equivalent fluid model[J]. Journal of Sound and Vibration, 2018, 426: 244–257. doi:  10.1016/j.jsv.2018.04.024
    王育人, 缪旭弘, 姜恒, 等. 水下吸声机理与吸声材料[J]. 力学进展, 2017, 47(1): 92–121.

    WANG Y R, MIAO X H, JIANG H, et al. Review on underwater sound absorption materials and mechanisms[J]. Advances in Mechanics, 2017, 47(1): 92–121 (in Chinese).
    ZHANG Y N, PAN J. Underwater sound radiation from an elastically coated plate with a discontinuity introduced by a signal conditioning plate[J]. The Journal of the Acoustical Society of America, 2013, 133(1): 173–185. doi:  10.1121/1.4768867
    ZHANG Y N, HUANG H, PAN J. Underwater sound radiation from an elastically coated infinite plate with periodic inhomogeneities of finite width[J]. The Journal of the Acoustical Society of America, 2017, 142(1): 91–102. doi:  10.1121/1.4985127
    KIM S H, HONG S Y, SONG J H, et al. Predictions of acoustical characteristics for a flank array sonar simplified to planar multi-layer system[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Portland OR: Institute of Noise Control Engineering, 2015: 439-448.
    YUAN B H, CHEN M, LIU Y, et al. Experimental and theoretical analysis for a fluid-loaded, simply supported plate covered by a damping and decoupling composite acoustic coating[J]. Shock and Vibration, 2017, 2017: 7460457.
    李玉荣. 德国海军潜艇发展思路分析[J]. 现代军事, 2017(9): 56–62.

    LI Y Y. Analysis on the development of German Navy submarine[J]. Arms & Technology, 2017(9): 56–62.
    倪楠楠, 温月芳, 贺德龙, 等. 结构-阻尼复合材料研究进展[J]. 材料工程, 2015, 43(6): 90–101. doi:  10.11868/j.issn.1001-4381.2015.06.015

    NI N N, WEN Y F, HE D L, et al. Process on the research of structure-damping composites[J]. Journal of Materials Engineering, 2015, 43(6): 90–101 (in Chinese). doi:  10.11868/j.issn.1001-4381.2015.06.015
    胡泊. 反声复合材料指挥室围壳声目标强度研究[D]. 北京: 中国舰船研究院, 2017.

    HU B. Research on target strength of submarine sails made by sound-reflecting composites[D]. Beijing: China Ship Research and Development Academy, 2017 (in Chinese).
    黄政, 熊鹰, 鲁利. 复合材料螺旋桨流固耦合振动噪声研究综述[J]. 哈尔滨工程大学学报, 2020, 41(1): 87–94, 124.

    HUANG Z, XIONG Y, LU L. A review on FSI vibration and noise performance research of composite propellers[J]. Journal of Harbin Engineering University, 2020, 41(1): 87–94, 124 (in Chinese).
    许鹏, 李刚, 于运花, 等. 高刚度环氧树脂与高模碳纤维的界面相容和性能匹配[J]. 复合材料学报, 2019, 36(9): 2076–2085.

    XU P, LI G, YU Y H, et al. Interface compatibility and performance matching between high-rigidity epoxy resin and high-modulus carbon fiber[J]. Acta Materiae Compositae Sinica, 2019, 36(9): 2076–2085 (in Chinese).
    范永忠, 孙康, 吴人洁. 环氧树脂混杂复合材料的阻尼性能研究[J]. 功能材料, 2000, 31(S1): 94–96.

    FAN Y Z, SUN K, WU R J. Investigation on the damping properties of hybrid fibers reinforced epoxy resin composite materials[J]. Journal of Functional Materials, 2000, 31(S1): 94–96 (in Chinese).
    刘建良, 梅志远, 唐宇航, 等. 几种典型复合材料板振动特性综合对比分析及设计规律研究[J]. 振动与冲击, 2019, 38(15): 65–72.

    LIU J L, MEI Z Y, TANG Y H, et al. Comprehensive comparative analysis for vibration characteristics of several typical composite panels and their design law[J]. Journal of Vibration and Shock, 2019, 38(15): 65–72 (in Chinese).
    张焱冰, 任春雨, 朱锡. 复合材料结构声学性能优化设计问题研究概述[J]. 玻璃钢/复合材料, 2014(1): 94–98, 67.

    ZHANG Y B, REN C Y, ZHU X. Review of optimization research on composite material acoustical performance[J]. Fiber Reinforced Plastics/Composites, 2014(1): 94–98, 67 (in Chinese).
    LIU J L, LIU J Y, MEI J, et al. Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores[J]. Composites Science and Technology, 2018, 159: 87–102. doi:  10.1016/j.compscitech.2018.01.026
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(107) PDF downloads(1075) Cited by()

Proportional views
Related

Review of research on sail hydrodynamic noise and control technology

doi: 10.19693/j.issn.1673-3185.01816

Abstract: The sail is one of the most prominent contributors to the hydrodynamic noise of a submarine. This study seeks to analyze the mechanisms and characteristics of sail hydrodynamic noise, and summarize the characteristics and development trends of its control technology. First, the basic mechanisms and composition of sail hydrodynamic noise are summarized, as well as the research status of the direct radiation noise, secondary noise and cavity noise induced by flow-excitation of sails' opening. The research progress of sail noise control technology is then summarized, including fillet design, "thin foil" sail shape design, cavity noise control, etc. Finally, several aspects of further research on the control of sail hydrodynamic noise are proposed. This paper illustrates the basic mechanisms in the progress of sail hydrodynamic noise control technology. It can provide important reference value for researchers engaging in hydrodynamic noise and ship design.

ZHANG W W, XU R W. Review of research on sail hydrodynamic noise and control technology [J]. Chinese Journal of Ship Research, 2020, 15(6): 72–89 doi:  10.19693/j.issn.1673-3185.01816
Citation: ZHANG W W, XU R W. Review of research on sail hydrodynamic noise and control technology [J]. Chinese Journal of Ship Research, 2020, 15(6): 72–89 doi:  10.19693/j.issn.1673-3185.01816
    • 指挥室围壳是为满足潜艇在水面状态时的指挥、观通等需求而设置的突体结构,内部通常围封耐压指挥室和通信天线、潜望镜、通气管等多种升降桅杆,一般情况下,围壳也是潜艇最大的附体结构。

      以往对围壳的设计主要考虑的是其对潜艇阻力、操纵性等水动力性能的影响,近年来,随着潜艇航速的提高,围壳部位的水动力噪声问题逐渐凸显,指挥室围壳等水下翼型结构的水动力噪声总级通常与流速的5~7次方成正比,在高流速时,甚至是以流速的10次方的规律增长[1]。文献[2]和文献[3]分别对潜艇的水动力噪声进行了实测数据分析和数值计算,结果均表明潜艇的自噪声分布在指挥室围壳和潜艇尾部存在2个明显的“驼峰”。针对围壳部位突出的水动力噪声问题,美国致力于潜艇水动力、结构与噪声综合研究的部门−水面战研究中心卡德洛克分部曾专门成立先进的围壳研发计划(advanced sail project),从水动力、水动力噪声、复合材料技术、结构设计等多方面对先进的围壳开展了深入研究深入研究[4-6]。可见,指挥室围壳是潜艇辐射噪声的重点部位。

      目前,关于指挥室围壳部位的水动力噪声研究已得到广泛关注,但系统、全面论述围壳水动力噪声机理、特性和控制技术进展的文献很少。本文将侧重于指挥室围壳水动力噪声的特点,对国内外相关技术及其研究进展进行回顾与总结。

    • 围壳部位具有非常复杂的流动特征。在围壳根部,围壳与艇体表面构成流动角区,致使来流边界层容易在该区域产生复杂的三维分离流动,形成由围壳前缘向后缘流动的“马蹄涡”;在围壳尾部,受逆压梯度和黏性阻力的影响,容易发生边界层分离和涡脱落;在围壳顶部,由于翼型的端面效应,当来流与围壳存在一定攻角时(转向航行),容易在围壳顶部产生梢涡;同时,围壳上的各类开孔还容易发生流激空腔振荡。这些流动会在围壳表面产生湍流脉动压力,表面湍流脉动压力一方面会直接产生噪声,另一方面又会激励围壳结构振动并辐射噪声。

      围壳表面多种不稳定流也使得围壳水动力噪声具有多种复杂的机理。Liu 等[7]通过大涡模拟和水洞试验对围壳水动力噪声机理进行了研究,指出围壳在不同类型不稳定流激励下产生的噪声特性不同,如马蹄涡主要贡献了500 Hz以下的低频噪声,尾涡主要产生线谱噪声(595 Hz),而边界层分离产生的噪声则具有宽频特性。Dowling[8]指出水动力噪声应重点关注其低频特性,因为低频噪声容易与结构振动产生明显的耦合,成为水动力噪声的主要贡献部分。根据噪声的频率特性和产生机理,本文将围壳水动力噪声归纳为4类:1)围壳表面湍流脉动压力的直接辐射噪声;2)湍流脉动压力激励围壳结构产生振动进而产生的辐射噪声,也称为二次辐射噪声;3)围壳开口部位在水流作用下产生的流激空腔噪声;4)当围壳尾部涡脱落频率与围壳固有频率相近时,产生的涡激共振噪声。围壳水动力噪声机理如图1所示。其中前2类噪声源主要构成围壳水动力噪声的低频宽带分量,第3类噪声主要表现为低频线谱分量,第4类噪声通常也表现为线谱噪声,但在未发生共振时线谱幅值较小。由于第4类噪声本质上也可以分解为第1类和第2类噪声,因而,本文主要对前3类噪声研究进行回顾和总结,并概述水动力噪声在试验测量方面的研究进展。

      Figure 1.  The mechanism of the hydrodynamic noise of sail

    • 围壳由于突出于潜艇艇体表面,破坏了艇体表面的均匀流场,因此在水下航行时,围壳表面会形成以马蹄涡、片状湍流边界层、梢涡和尾流涡为代表的复杂湍流绕流,湍流中的速度、压力和温度等物理参数将发生近乎无规则的脉动,这些复杂的湍流脉动一方面会使流体介质产生密度波动,即声波,另一方面,入射到壁面的湍流脉动又会因壁面的存在而发生动量损失,引起动能向声能的转换,在壁面形成偶极子声源并辐射噪声,这种由绕流中的湍流脉动直接辐射的噪声称为直接辐射噪声。由于湍流脉动具有随机性,因而直接辐射噪声通常表现为宽带噪声。

      起初,湍流运动和噪声似乎属于2个完全不相干的领域,很难将这两者联系起来,以致于早期研究人员总是把流体运动引起的噪声问题转化为流体激励板、壳等结构的振动发声问题。为解释湍流发声的机理,Lighthill[9]提出了声比拟理论,其通过将N-S方程左端重组为经典声学中的声传播方程,将剩余各项作为声源项置于方程右端,用以表征湍流运动对声传播的影响。Lighthill声比拟方程首次在理论上将自由湍流运动与噪声建立联系,直观地揭示了湍流中的速度脉动、黏性应力以及熵波动会在流场中产生的密度波动(即声波),并表现出四极子源声辐射特性。

      但采用Lighthill声比拟方程还不能完全解释围壳绕流等绕流辐射噪声问题,因为绕流噪声场会受到壁面边界的影响,而Lighthill声比拟方程是基于自由湍流场提出的。为解释壁面影响下的湍流发声问题,Curle[10]将固壁边界的湍流脉动压力或剪切力作为表面偶极子源,对Lighthill声比拟理论做了推广,成功解释了湍流边界层与固壁作用的发声问题。Williams等[11]进一步考虑旋转壁面对声场的影响,运用广义函数法进一步对声比拟理论做了推广,得到了声比拟理论的一般形式FW-H方程,该方程揭示了旋转壁面与流场相互作用形成的噪声成分除了有四极子源、偶极子源外,还有因壁面旋转运动产生的单极子源。

      在围壳直接辐射噪声问题中,由于不存在旋转壁面边界,因此不考虑单极子声源。围壳绕流是典型的低马赫数流动,Howe[12]在声比拟理论的基础上,通过涡旋理论研究表明,低马赫数流动中的四极子源的辐射效率很低,可以忽略不计,主要声源是偶极子源,即壁面湍流脉动压力。通过声比拟理论,可以较为清晰地解释围壳直接辐射噪声主要由壁面湍流脉动压力决定,但声比拟理论主要由理论公式推导得来,对于壁面湍流脉动压力是如何辐射噪声的物理机制还难以解释。Howe[13]对湍流脉动压力的声辐射的物理机制进行了总结:湍流脉动根据特征值可以分解为声波、涡波和熵波,对应声速的扰动分量为声波,对应来流速度的扰动分量为涡波和熵波。涡波常被用于描述湍流脉动,熵波在等熵流动中可以忽略。声波与固壁边界的相互作用是经典的散射问题,而当涡波入射到固壁边界时,由于边界条件的限制,必须诱导出另外的运动产生反向速度以抵消入射涡波在壁面法向的分量,当入射涡波为非稳态(湍流脉动本身为非稳态的)时,会在固壁表面产生非定常压力分布(声源),从而向外辐射偶极子声。

      根据声比拟理论,作为偶极子源的壁面湍流脉动压力可以通过求解N-S方程准确求得,进而计算出流动噪声的声场分布,这也是流动噪声数值预报的基础,但要更好地实现对绕流直接辐射噪声的控制,还必须将壁面湍流脉动压力与实际的湍流物理图像联系起来。Powell[14]和Howe[15]建立的涡声理论揭示了流动噪声实际上与湍流中涡的结构和尺度密切相关。虽然湍流的机理至今尚未彻底解释清楚,也没有准确的定义,但普遍认为湍流是包含各种大尺度涡和小尺度涡的非定常复杂流动。Hardin[16]曾对低马赫数下的湍流边界层声源进行研究,认为湍流边界层的主要声源是边界层中大涡之间的相互作用;Kine等[17]认为大涡运动呈现一定的统计规律,并非为完全随机的,这种具有一定规律的大涡运动是湍流边界层低频脉动的主要原因,而小尺度涡运动则是高频脉动的主要原因。Huerre等[18]和Mankbadi等[19]对低马赫数流动中大尺度湍流涡与声辐射的关系进行研究,证明了低马赫数流动中大尺度涡是主要的湍流噪声源。

      在围壳绕流中,根据不同部位的几何特征,有不同的大尺度涡,如图2所示。围壳根部以“马蹄涡”为主要特征;在围壳顶部,湍流脉动压力主要受梢涡尺度的影响;围壳尾部一般会伴有较强的涡脱落,形成尾流涡,周期性的涡脱落会对围壳尾部产生较强的附加脉动压力;而在围壳中部,边界层主要经历由层流到转捩再到完全发展为湍流边界层的过程,该区域的湍流脉动压力主要由片状边界层决定。其中,围壳根部的“马蹄涡”是围壳水动力噪声的突出噪声源和振动激励源[20],它的形成实际上是由于围壳等突体结构对来流的阻滞作用,在其上游形成逆压梯度进而引起艇体表面边界层发生三维流动分离,并在主、附体交接的角区沿突体表面卷绕,形成所谓的马蹄涡[21],马蹄涡在角区附近发生卷并、集中的过程中伴随着强烈的振荡现象,并在表面产生较强的脉动压力和剪切力[22] 。围壳根部的马蹄涡强度与来流攻角密切相关,Jiménez等[23]发现当攻角小于17°时,围壳马蹄涡的强度会随攻角的增大而增大,而当攻角大于17°时,马蹄涡强度的变化趋势则相反。由于流场中的大涡结构和尺度与流动边界条件密切相关,因而可以通过围壳外形优化来减小或消除马蹄涡、尾涡等大尺度涡强度,达到降低围壳水动力噪声的目的,后文将对相关研究进一步总结。

      Figure 2.  Vortex flow on the surface of sail

    • 围壳表面的湍流脉动压力一方面会直接产生声辐射,另一方面还会激励围壳结构振动并产生辐射噪声,即二次辐射噪声。由于指挥室围壳为透水结构,不需要承受静水压力,因而其结构整体刚度通常小于艇体结构刚度,受流体激励而产生的振动响应较大,所以由围壳结构受激振动产生的二次辐射噪声通常是围壳水动力噪声中不可忽视的噪声分量,甚至是水动力噪声的主要分量[24]

      二次辐射噪声是典型的流体−结构−声场的相互作用问题,通常分3个步骤进行求解:获得流体激励力、计算结构的振动响应、求解结构振动产生的辐射声场。在围壳流激振动噪声问题中,流体激励力主要是围壳表面的湍流脉动压力,这里需要指出的是,湍流中的脉动压力包含声压和伪声压2个部分,其中声压是由于雷诺应力而产生的密度起伏,满足波动方程,伪声压则是由于速度脉动而产生的动量起伏,满足动量方程。伪声压占湍流脉动压力的绝大部分能量,在二次辐射噪声计算中,通常只将由速度脉动引起的伪声压部分当作流体激励源[25]

      表面湍流脉动压力是时空变化的随机激励源,如何对这种面分布的激励力进行描述是首先需要解决的问题,一种常用的方法是通过频率−波数谱描述。湍流脉动压力的频率−波数谱实际上是基于统计湍流理论和试验结果的一种半经验方法,在求解由结构受激振动产生的二次辐射噪声时,需要选择合适的湍流脉动压力频率−波数谱模型。俞孟萨等[24]曾对采用湍流脉动压力的频率−波数谱模型计算结构受激振动产生的噪声进行过详细的总结与回顾。但需要注意的是,采用湍流脉动压力的频率−波数谱模型只能计算平板或圆柱壳体等简单结构的受激振动声辐射问题,而围壳结构复杂,其表面脉动压力不仅仅只来源于湍流边界层,还有马蹄涡、梢涡、尾部边界层分离和涡脱落等其他湍流脉动源,无法采用湍流边界层脉动压力的频率−波数谱模型表示,通常需要借助计算流体力学(CFD)技术先提取出湍流脉动压力作为激励力,再对湍流脉动压力进行频率−波数谱转换,进而求解二次辐射噪声。Liu等[7]便通过大涡模拟与频率波数谱相结合的方法,对指挥室围壳的二次辐射噪声进行过数值求解。

      随着计算机性能和CFD理论的快速发展,诸如大涡模拟(LES)等数值模拟方法已经可以实现在有限的计算机资源下对湍流脉动进行准确求解。目前,对二次辐射噪声的数值求解通常是将流场计算和声场计算分开进行,即先通过CFD数值求解得到结构表面的湍流脉动压力,再将表面湍流脉动压力作为弹性结构的激励力,计算结构的振动响应和声辐射。实际上,围壳二次辐射噪声在数值模拟求解的过程中不可能完全考虑流体−结构−声介质的相互耦合作用,其原因一方面是部分的耦合作用机理还不清晰;另一方面是计算机资源往往不允许。由于水介质中的二次辐射噪声问题通常是低马赫数绕流和结构小振幅振动问题,故在数值模拟计算中可以只考虑单向耦合作用,即只考虑水对弹性结构的作用,这样可以大幅提高数值计算效率,同时也能保证较高的二次辐射噪声计算精度。

    • 围壳并非为全封闭的短翼形结构,其顶部存在为升降桅杆而设置的开孔,围壳壁上通常设有通气孔和流水孔,这些开孔与围壳内部腔体相连形成开口腔,当围壳表面湍流边界层流经这些开孔时,会在孔口形成剪切层振荡,引起流激空腔噪声。流激空腔噪声是围壳水动力噪声低频线谱分量的主要噪声源。

      所谓流激空腔噪声是指流体流经腔口导边时,边界层在前缘分离并在腔口形成具有振荡特性的剪切流动,剪切层到达腔口随边时,与随边发生碰撞并产生压力脉动,压力脉动向上游传播至导边又进一步影响前缘的边界层分离,在一定条件下剪切层扰动形成一个闭合反馈环,产生单一频率的自持振荡[26-27],自持振荡还会与空腔声模态、空腔弹性结构模态发生多种形式的耦合共振,从而辐射强烈的线谱声[28]。Rockwell等[26]通过对众多不同开口、不同腔体的空腔振荡特性进行分析,将空腔振荡形式分为了3类:1)流体动力振荡,由剪切层固有不稳定性和腔口处的闭合声反馈形成,即自持振荡;2)流体共振空腔振荡,即腔口的自持振荡频率与腔内驻波频率发生的共振振荡;3)流体弹性空腔振荡,为腔口自持振荡与空腔弹性壁面振动发生耦合共振的振荡形式。图3较为准确地揭示了目前被认可的流激空腔发声机理,图中的①,②,③,④分别代表腔口自持振荡反馈环、流体共振振荡过程、流体弹性共振振荡过程和各种振荡形式混合的发声机制。

      Figure 3.  Mechanisms of flow-induced cavity noise[29]

      空腔噪声的研究最早始于20世纪50年代在轰炸机弹舱上出现的周期性强压力脉动问题[30],但以1964年Rossister[31]提出的声反馈模型为空腔噪声研究的发展标志。Rossister针对空腔流动开展了大量的风洞试验,认为空腔腔口剪切层振荡的声反馈机制是空腔产生显著线谱噪声的主要原因,并提出了空腔剪切层自持振荡频率的半经验预报公式,该公式成为后续空腔噪声频率预报的“母型”公式,众多学者针对具体的空腔流动问题对Rossister公式进行了修正:Heller等[32]将Rossiter公式中向上游传播的扰动声波速度修正为了当地声速,并指出Rossiter公式只在马赫数大于0.8时较为准确;Bilanin等[33]专门研究了Rossister经验参数的取值问题;国内的张强[34]、朱幼君等[35]则针对低马赫数空腔流动,对Rossiter公式中的经验参数做了进一步修正,使空腔振荡的频率预报相较于Rossiter和Heller公式更为准确。以上空腔振荡频率预报公式都是基于空气介质流动提出的,频率预报相对较为准确。然而,关于水介质当中的空腔自持振荡频率预报研究则很少,Howe[36]曾对极小马赫数下的空腔和开口线谱噪声进行了研究,这对水中空腔噪声频率预报研究具有一定的借鉴意义。

      流激空腔噪声的特点在于,即使在较低流速下,也会有腔口剪切层自持振荡发生,并辐射线谱噪声;而当自持振荡与空腔共振频率接近时,线谱噪声幅值会骤然增加。Elder[37]最早对空腔自持振荡辐射的线谱噪声和空腔共振时辐射的线谱噪声进行了区分,并分别称之为“剪切纯音”(shear tone)和“空腔纯音”(cavity tone),其中剪切纯音在很宽的流速范围下都会发生,而空腔纯音只在有限的几个流速范围内发生。大量研究表明,空腔共振模态主要发生在最大尺度方向。Sarohia等[38]根据空腔长度L与深度D的比值将空腔划分为深腔和浅腔,当L/D>1时称为浅腔,L/D<1时称为深腔,浅腔通常在流向的声模态发生空腔共振,而深腔常在深度方向的声模态发生共振。East[39]和Heller等[32]通过试验研究,分别建立了深腔和浅腔的空腔共振频率预报经验公式。对于水中空腔流动,马赫数通常很小,而声波波长较长,腔口发生的自持振荡频率很难接近空腔声模态频率(除非空腔尺度很大而开口尺度很小)。实际上,水中空腔流动仍然存在共振线谱噪声,这是因为在水中,流体介质与空腔壁存在较强的弹性耦合,会降低空腔声模态频率。袁国清[29]和高岩等[40]对此类水中弹性腔的耦合共振问题进行了研究,证明弹性壁会降低空腔声模态频率,从而更容易发生流激空腔共振。

      对于影响流激空腔振荡和声辐射特性的因素,除L/D以外,还有来流边界层厚度[41-43]、开口形状[44-45]、来流攻角[46]、空腔几何外形[47-49]等因素。此外,朱习剑等[50]认为,指挥室围壳的空腔结构为突出式空腔,应区别于飞机弹仓、船体上流水孔等陷落腔结构来进行研究。但无论何种结构、何种形状的空腔,腔口的剪切层振荡是流激空腔噪声的激励源,腔口的声反馈环是自持振荡形成的必要条件,正如Blake[51]所指出的,控制空腔共振最有效的方法首先是降低或消除腔口剪切层的发展,其次是破坏或阻挡反馈环的形成,当无法做到这些时,那么就要尽量避免流激空腔共振发生。

    • 对水动力噪声的计算和测量是揭示水动力噪声机理和特性以及对其进行有效治理的2个关键环节。在水动力噪声计算方面,李环等[52]和王春旭等[53]进行了较为详细的综述,限于文章篇幅,本文不再赘述。针对水动力噪声测量的实验研究,目前主要有水筒测量、拖曳模测量、大尺度自航模测量和浮体测量等试验方法。

      水筒测量是一种比较成熟且常用的水动力噪声测试方法,它需要保持测试模型在水筒内不动,利用水筒内的循环水流与测试模型形成相对运动而进行水动力噪声测量。这种测量方法的主要优势是可以对流速、压力等水力参数精确调整,同时方便利用激光多普勒测速(LDV)、粒子成像测速(PIV)等技术对流场进行观察。在用水筒测量水动力噪声时,水听器可置于水筒内用于测量模型的水动力噪声。Li 等[54]和黄桥高等[55]直接将水听器置于水筒内,分别测量了水面船和回转体水下航行器缩比模型的水动力噪声,并较为准确地预报了实尺度下的水动力噪声。更为常用的水筒测量方法是将水听器置于与水筒工作段相连接的外部水箱中,这要求与外部水箱连接的水筒壁具有良好的透声性。Abshagen等[56]通过外置水听器的水筒测量方法,对平板的流噪声进行了测量,测量结果与拖曳模的测量结果相近。用水筒测量水动力噪声往往也存在诸多限制,首先是受限于水筒工作段尺寸,无法对较大尺度模型开展水动力噪声试验,而更为重要的限制因素是狭小密闭的水筒内往往存在强烈的混响,水筒内的背景噪声甚至会淹没所要测量的水动力噪声。减少这些限制影响的一个有效措施就是增大水筒的工作段尺寸。世界各大先进空泡水筒(循环水槽)也确实是在朝这个方向发展,如中国船舶科学研究中心的循环水槽工作段截面尺寸达到了2.2 m$ \times $2.0 m[57],这也是国内目前最大的循环水槽。德国汉堡水池大型空泡水筒工作段的截面尺寸为2.8 m$ \times $1.6 m,美国海军水面战研究中心的William B Morgan大型空泡水筒的工作段截面尺寸更是达到了3.05 m$ \times $3.05 m[58]。当水筒的背景噪声过于强烈时,一般通过测量模型的表面脉动压力来对水动力噪声进行评估。袁国清[29]采用这种测量表面脉动压力的方法在重力水筒内对由空腔绕流引起的水动力噪声进行了实验研究。

      拖曳模测量是通过低噪声拖曳装置带动试验模型在水池内以一定的速度运动,进而对模型产生的水动力噪声进行测量,相较于水筒测量方法,拖曳模测量对模型尺度的限制以及受背景噪声的影响都要小得多。拖曳模测量水动力噪声通常是在专门的拖曳水池中进行。Gao等[59]在拖曳水池中通过固定位置的单点水听器,对水面船模型进行了水动力噪声测量,并利用短时傅里叶变换将测量的时域噪声信号映射至时间−频率域,有效识别出了水动力噪声分量。Haimov等[60]在拖曳水池中将由4个水听器组成的圆周阵列与螺旋桨一同固定到拖曳架上,使水听器阵与螺旋桨保持相对位置固定,进而对螺旋桨噪声进行了测量。戴绍仕等[61]利用脉动压力传感器对陷落式空腔内部的脉动压力进行测量,在拖曳水池内对不同功角下的流激空腔振荡特性进行了实验研究。当对水动力噪声试验环境有特殊要求时,拖曳模测量水动力噪声也可以在其他类型的水域中进行。Abshagen等[62]在研究湍流边界层脉动压力和水动力噪声的关系时,因需要尽可能降低海洋背景噪声以及测量装置噪声的影响,故选择在1 000 m 水深的挪威松恩海峡开展拖曳模水动力噪声试验,并将拖曳模置于100 ~150 m水深区间,通过线型等距分布的水听器阵列对拖曳模水动力噪声进行了测量。

      浮体测量是Haddle等[63]于上世纪60年代最早提出一种水动力噪声测量方法。它是将试验浮体模型从深水湖底自由释放,完全利用其自身的浮力,而无需利用任何动力装置推动浮体冲向水面,进而测量浮体模型在上浮过程中产生的水动力噪声。由于几乎完全消除了机械噪声的影响,可以显著提高水动力噪声测量的准确性,且浮体模型通常可以达到较高的上浮速度,因此浮体测量十分有利于中、高速水下航行体的水动力噪声测量。美国和俄罗斯等国专门建设了浮体测量试验基地,如俄罗斯克雷洛夫中央船舶研究所早在上世纪60年代就设计建造了深水浮体测量基地,专门用于测量水下航行器的水动力噪声,其浮体最高上浮速度可超过22 m/s[64];美国在位于爱达荷州的本德奥瑞湖潜艇水声试验区也专门规划了浮力艇试验区,通过使大比例实艇自浮模型从300 m水深的湖底自由加速上浮升至湖面,专门用于潜艇艇首和指挥室围壳部位的水动力噪声测量试验[65]。国内针对浮体测量水动力噪声的试验研究相对较少。陈灿[66]采用了浮体测量方法相似的原理,通过测量球形体在湖上无动力下沉过程中的水动力噪声,对球形体的水动力噪声特性进行了实验研究。张翰钦等[67]则将潜艇指挥室围壳缩比模型缚于浮力回转体上进行自由上浮试验,通过测量表面脉动压力,对开孔围壳的流激振荡现象进行了研究。目前,国内还没有建成专门的浮体测量试验平台,但鉴于其在水动力噪声试验方面的显著优势,建成专门的浮体测量试验平台对进一步探明水动力噪声机理、降低水下航行器在中、高航速下的水动力噪声等具有积极的意义。

    • 围壳水动力噪声控制主要从3个方面开展:降低流体激励力、降低围壳结构受激振动响应、降低声辐射效率。在降低流体激励力方面,主要是通过开展围壳的水动力外形优化来降低马蹄涡、梢涡和尾涡等大尺度涡强度,如填角设计、线型优化、开孔设计等;在降低围壳结构受激振动方面,主要涉及开展围壳结构优化,提高整体或局部结构强度,如加强围壳结构布置和尺寸的优化设计;在降低声辐射效率方面,主要涉及材料的使用,如在围壳表面涂覆柔性阻尼材料、采用复合材料建造围壳等。

    • 填角是围壳前缘与艇体过渡连接的一段具有一定弧度的结构,主要用于减弱或消除围壳根部由前缘向下游发展的马蹄涡,其外形如图4所示。

      采用填角设计来控制马蹄涡的发展最早出现于空气动力学领域。Devenport等[68-69]最先利用填角对机翼马蹄涡进行了控制研究,并指出填角在高度等于翼型厚度、长度等于弦长时抑制马蹄涡的效果最好。Simpson[21]研究指出首部填角可降低绕流边界层中的逆压梯度,抑制边界层分离,进而可以实现在零攻角下消除主、附体结合部位的马蹄涡。Zess等[70]对应用于汽轮机叶片上填角的最佳消涡尺寸进行了研究,认为当填角高度为边界层厚的1倍、长度为边界层厚2倍的尺度下,消除马蹄涡效果最好。

      在围壳马蹄涡控制研究中,Gorski[71]最先对填角的涡控效果进行了研究,发现围壳填角能有效降低围壳前缘的逆压梯度,进而消除马蹄涡的产生;Seil等[72]探究了围壳与主艇体交接部位结合外形对表面涡流和阻力的影响,结果表明在围壳首部加装填角能减弱马蹄涡强度,同时也能降低阻力;Toxopeus等[73]通过数值模拟研究了抑制围壳根部马蹄涡的最佳填角尺度,认为填角在长度等于围壳翼型剖面半弦长、高度为弦长的15%时效果最佳;Lin等[74]和张楠等[75]通过大涡模拟的数值计算方法,分别对围壳加装填角后的辐射噪声和表面脉动压力进行了计算,结果表明填角可使围壳的辐射噪声和表面脉动压力分别降低2~5 dB和~26.7 dB。

      Figure 4.  The sail fillet on the Virginia-class SSN[76]

      从填角设计相关文献和围壳填角技术的实际工程应用来看,填角是一种行之有效的围壳根部马蹄涡控制技术,但关于围壳填角的最佳消涡尺寸还没有较为统一的定论,相关的公开研究资料也很少,需要做进一步的研究。

    • 为减小航行阻力,现代潜艇围壳普遍采用流线型的翼型剖面设计,但关于围壳翼型剖面厚度(即围壳宽度)与水动力噪声的关系鲜有公开的文献。而在气动噪声领域中,翼型结构厚度与噪声的关系已经有一定的研究结论,即在一定范围内,机翼的相对厚度(翼型最大厚度与弦长之比)越小,产生的气动噪声越小。刘大伟等[77]对NACA0008,NACA0010和NACA0012这3种不同厚度的对称翼型进行了气动噪声仿真与试验,结果表明,随着机翼厚度的增加,气动噪声也随之增加。卓文涛等[78]通过改变NACA0012对称翼型的相对厚度和最大厚度位置对翼型进行了优化,结果表明在一定相对厚度范围内,机翼厚度越小,产生的气动噪声越小。

      潜艇围壳和飞机机翼具有相似的外形,认为翼型剖面厚度对其各自的流体动力噪声应具有类似的影响,仅有的几篇相关文献也印证了这一点。Crepel[79]曾对西方国家潜艇主要采用的“薄翼”型围壳和前苏联潜艇主要采用“飞机座舱”型围壳进行了比较,指出薄翼型围壳设计更有利于噪声性能。Joubert[80]在澳大利亚新型潜艇外形设计的建议上也指出,更薄的围壳外形更有利于围壳的噪声性能和阻力性能。可见,如何将围壳外形设计得更“薄”极有可能成为围壳低噪声设计的一个新方向。

      在工程应用上,美国“弗吉尼亚”级核潜艇围壳很好地体现了薄翼型围壳的设计特点,如图5~图6所示。相比其前级艇“洛杉矶”级和“海狼”级,“弗吉尼亚”级核潜艇围壳剖面的相对厚度明显减小[81],且在该型潜艇围壳侧壁对应的每根桅杆位置处,均设有若干可拆检修板,此设计可以实现在围壳外部对桅杆进行检修,从而省去了围壳内部检修空间,有利于减小围壳厚度。

      Figure 5.  Top views of sails of three U.S. SSN[81]

      Figure 6.  Detachable service boards on the sail of Virginia-class SSN[82]

    • 指挥室围壳线型是决定围壳表面脉动压力和尾部旋涡脱落的主要因素,对前面所提到的第1,2,4类噪声均有直接影响。现代潜艇指挥室围壳普遍采用水平剖面为对称翼型的设计,但在沿垂向高度的变化上,则差异较大。美国“弗吉尼亚”、“海狼”级等核潜艇的围壳采用的是直壁式围壳线型,这类围壳的水平剖面几乎不沿高度变化;英国“机敏级”、德国212型、澳大利亚“柯林斯”级等潜艇的围壳则是斜壁式,其水平剖面线型的弦长和半宽随高度的增加而减小,通常这样的线型设计是为了使围壳根部与潜艇上层建筑能较为平滑地过渡连接;还有一类是以俄罗斯“北风之神”为代表的潜艇围壳,这类围壳采用的是倒斜壁式,即水平剖面弦长随高度的增加而增大。

      从声学设计的角度出发,围壳线型优化的主要目的是使围壳受到的壁面湍流脉动压力最小,主要体现在水平剖面的线型设计和交接部位的外形设计这2个方面。前者主要对围壳表面边界层的发展以及尾部涡脱落特性有影响,后者主要对根部马蹄涡的生成和演化产生影响。但当围壳没有与艇体形成过渡连接时,剖面线型则对马蹄涡也有一定的影响。马蹄涡的特性通常与围壳等翼型体首部的形状、尺寸大小密切相关,翼型体的前缘半径越小、首部线型越尖锐,首部绕流流场中的逆压梯度就越小,产生的马蹄涡尺寸和强度也就越小[83]。Olcmen等[84]对6种不同突出翼型交接部位的流场进行了油流显示试验,发现前缘半径小和相对厚度(最大厚度与弦长之比)小的翼型产生的马蹄涡相对较弱,且表面脉动压力较小。Wei等[85]通过对不同形状主体的马蹄涡特性进行研究,指出减少前缘钝度可以有效抑制马蹄涡。围壳水平剖面线型直接决定了其周围绕流场的压力梯度分布,而压力梯度与湍流边界层中的壁面脉动压力密切相关;Cohen等[86]通过大涡模拟分析了压力梯度对湍流边界层作用于壁面的脉动压力的影响,结果表明逆压梯度越大,湍流边界层产生壁面脉动压力相对越大,声特性也越明显,因此,围壳的低噪声剖面线型应保证前缘半径小、首部线型较为尖锐且逆压梯度较小。李鑫等[87]提出的低噪声翼型便具有小前缘半径和小逆压梯度的特点。

      在围壳与艇体的交接形式方面,主要有2种设计形式:一种是围壳前部填角,相关研究进展已经在2.1节进行描述;另一种是围壳与艇体光滑过渡连接。Seil等[72]曾提出一种与潜艇艇体光滑过度连接的“一体型”围壳,这种围壳的导边和随边都为倾斜状,相对于传统直翼型围壳,“一体型”围壳与艇体形成光滑过度,抑制了结合部位的马蹄涡,同时也增大了围壳体积,比较适合容纳更大的设备以满足现代潜艇的特殊战术需求[88]。英国“机敏”级核潜艇和德国212型潜艇围壳很好地体现了这种围壳设计;王开春等[89]对具有倾斜随边围壳的水动力噪声进行了数值研究,计算结果表明,倾斜随边布局的围壳可以抑制尾流的摆动,进而降低尾流噪声,良好设计的随边形状可以降低总级达5 dB的水动力噪声。此外,一种“座舱盖”形围壳曾吸引了广泛关注,这种围壳因外形酷似飞行员的座舱盖而得名,美国水面武器研究中心的卡德洛克分部最先对该类型围壳进行了研究,该团队的研究报告指出,这种类型围壳可以有效抑制围壳马蹄涡、梢涡和尾涡[4-6];Lin等[74]和张楠等[75]分别对座舱盖围壳的水动力噪声性能进行了数值模拟研究,结果表明,“座舱盖”围壳可降低总声级达9 dB和6 dB。但值得注意的是,虽然“座舱盖”围壳有较为可观的低噪声,但其研发至今已有20余年,仍未见实际应用。

    • 围壳开口部位由于在流体的激励下容易发生腔口剪切层自持振荡,并在一定条件下发生空腔共振,辐射强烈的线谱噪声,因而围壳往往成为水动力噪声的突出噪声源。对于围壳开口的空腔噪声控制,最直接的方法是对这些开口进行封闭,这在实际工程中已有所应用,典型的如英国“机敏”级核潜艇和美国“弗吉尼亚”级核潜艇均在其围壳顶部开口应用了启闭装置,当桅杆需要升起时,可将启闭装置打开,而在水下航行不需要升起桅杆时,启闭装置可以对开口进行封闭,如图7所示。

      Figure 7.  On-and-off devices of top openings on sails

      并非所有的围壳部位开口都适用启闭装置,出于安全性等方面的考虑,如流水孔、通气孔等必须要保持常开状态,因而对于这些开孔的流激空腔噪声需要采用其他措施进行控制。根据是否有外界能量的输入,空腔噪声控制可以分为主动控制和被动控制2种。Cattafesta等[92]曾对空腔噪声的主动控制进行过详细的综述,大抵将主动控制方法分为了4类:一是在空腔前缘下方注入一定流量的流体(也称次级流)[93-95],通过外部射流减小腔口的对流速度梯度,减弱剪切层振荡的发展;二是在空腔导边布置振荡板[96-97],振荡板以一定的频率振动而影响腔口的涡脱落,进而减缓腔口的剪切层振荡;三是在空腔后壁面上布置激振器[98],干扰剪切层拍击腔口随边产生压力脉动,破坏腔口剪切层自持振荡的反馈环;四是在腔口导边布置零质量射流器[99-100],这类控制方式与第1类方式相近,但没有外部流体输入。虽然这些主动控制方法往往能降低20 dB以上的空腔线谱噪声,但主动控制机构复杂,技术成熟度较低,会引入控制装置的自噪声,且这类主动控制方法通常只在较高马赫数下能实现较好的空腔噪声抑制效果,对于水中流速通常为极低马赫数(Ma<0.01)的情况,还未见有空腔噪声主动控制方面的文献,因此,对于围壳开口等水中空腔的噪声控制,被动控制方法仍不失为一种可靠、有效的途径。

      空腔噪声的被动控制方法通常包括2类:改变空腔形状和设置扰流体。Franke等[47]通过对比48组不同几何外形空腔的流激振荡特性发现,将导边和随边设计成斜坡状能有效减弱空腔振荡。Bolduc等[101]和Omer等[102]分别分析了空腔导边和随边几何形状对空腔流激声共振的影响,试验结果表明,改变随边几何外形可以有效抑制流激空腔共振,但不能完全消除,而具有良好外形的导边则可以完全抑制空腔声共振的发生。宁方立等[103]提出了一种可变形状的空腔结构模型,这种空腔结构可以通过调整后壁面倾斜角来抑制空腔振荡和噪声;Saddington等[104]对比分析了13种不同被动控制措施对空腔噪声的抑制效果,结果表明,扰流体相对于改变空腔形状有更好的空腔噪声抑制效果,而导边扰流体的效果又优于随边扰流体。用于空腔流动控制的扰流体主要有方形、锯齿形、三角形和圆柱形等不同的几何外形,且通常都是置于腔口导边。Shaaban等[105]对安装于导边的方块扰流体的空腔声共振抑制效果进行了研究,风洞试验结果表明,方块扰流体有效降低了流激空腔噪声,并使得声共振发生速度向高速移动;Saddington等[106]对导边锯齿单元的空腔降噪效果进行了研究,发现锯齿单元具有抑制空腔噪声和推迟空腔声共振发生的作用。随后,梁勇等[107]进一步对锯齿单元不同安装角度的空腔噪声抑制效果进行了研究。McGrath等[108]早在1996年就介绍了一种在腔口导边上方放置圆杆的控制装置,不仅可以显著抑制空腔声共振,并且在较大的速度范围内控制效果明显。Flaherty等[109]对圆杆扰流体和其他3种扰流体的空腔声共振控制效果进行了对比研究,结果表明圆杆扰流体的抑振效果最好。Sarpotdar等[110-111]的研究结果指出,圆杆扰流体对空腔共振线谱声的抑制效果与圆杆和导边之间的间距及圆杆直径相关。Martinez等[112-113]通过水洞试验分析了圆杆扰流体的作用机理,并将其总结为:圆杆将腔口剪切层向上抬升,且脱落的高频卡门涡与剪切层内的大尺度相干涡重组。以上被动控制措施已被证明能有效抑制空腔噪声,但仍然具有一定的局限性,例如改变空腔形状在很多实际工程中不可能实现,安装扰流体通常也会带来一定的额外阻力。

      相对于潜艇的其他结构,围壳结构刚度通常较小,随着腔体弹性增加,会降低空腔声模态频率,增加空腔声模态与腔口剪切层振荡耦合共振和强声辐射的可能性[40]。因此,对于围壳开口处的空腔噪声控制,还应格外注意水弹性共振,在围壳结构设计中,应加强开孔周围的局部结构刚度,并尽量减小与开孔相连的空腔尺寸,提高空腔固有声模态频率,避免空腔共振的发生。

    • 指挥室围壳根部由于角区流动形成的马蹄涡除了会在围壳部位引起较为强烈的直接声和二次声外,还会使围壳尾流成为以湍流脉动、黏性效应和漩涡运动为特征的复杂流场区域,导致螺旋桨盘面伴流严重不均匀,引起螺旋桨噪声增大。为减弱围壳部位马蹄涡的发展,降低潜艇水动力噪声,除上述所提到的围壳填角外,自20世纪60年代以来,相关学者还开展了一系列应用于围壳等航行器突体部位的流动控制装置研究。

      围壳马蹄涡的流动控制装置可分为被动和主动2种。被动流动控制装置主要是在围壳导边前部额外设置扰流体,或增加狭缝、凹槽,以改变围壳根部流场,从而达到消除或抑制马蹄涡的目的。三角翼是较早应用于潜艇上的一种消涡装置,苏联的“查理”级核潜艇早在1968年就在围壳根部前方安装了三角翼,可以用来减弱围壳根部位的马蹄涡[114]。Gupta[115]对这种三角翼的消涡机理进行了研究,认为其主要作用机理是可以产生与原马蹄涡旋向相反的的涡流,进而减弱马蹄涡强度。Théberge等[116]则针对三角翼尺寸大小与消涡效果的关系进行了实验研究。Liu等[117-118]提出了一种应用于围壳侧壁的消涡装置,该装置是一种置于围壳两侧马蹄涡生成与演化发展区域的长方形薄片,可以明显降低马蹄涡强度。Ölçmen等[119]设计了一种安装于翼型体首部的围栏装置,这种围栏装置可以将马蹄涡结构打碎成更小的涡结构,进而抑制结合部位的马蹄涡。Wang等[120-122]提出了斜杆、四面体等几种被动流动控制装置,可以对主、附体结合部位的马蹄涡起到一定的抑制作用,但还未在围壳绕流场中验证其控制效果。Kang等[123]指出可在主、附体结合部前方设置一道狭缝,该狭缝可通过引起结合部上游来流扩散,进而减弱马蹄涡,但狭缝的存在同样会带来流激空腔噪声问题。主动流动控制装置一般是在围壳首部利用喷流或流吸技术,使喷流与围壳根部结合流产生有益的干涉,或通过流吸抑制来流在驻点处卷曲成大尺度涡,从而达到消涡的目的。Thrift等[124]采用粒子成像测速(PIV)技术研究了喷流对马蹄涡的影响,流场成像结果表明,外部喷流通过改变突体前方来流在垂向的速度分布,抑制来流在突体前方驻点处卷曲成大尺度涡,从而抑制马蹄涡的生成与发展。张楠等[125]在围壳首部两侧应用喷流技术进行了马蹄涡控制,结果表明,通过主动喷流能有效减小围壳根部的涡量,并有效改善螺旋桨盘面的入流品质,喷流的控制效果与喷流孔的位置和喷流流量密切相关。Liu等[126]应用流吸技术对翼−板结合流进行了控制研究,并在翼体前方、马蹄涡卷曲的起始位置设置了一排流吸孔,通过控制抽吸流量,翼−板结合流中几乎没有成形的马蹄涡结构,表面脉动压力也显著降低。

    • 围壳结构优化设计的目的是在总体重量的约束下,使围壳在绕流激励下的振动响应最小。通过前文的分析可知,围壳所受到的绕流激励主要包括:表面湍流脉动压力、开口剪切层振荡和尾部涡脱落激励。其中,表面湍流脉动压力是以低频为主的连续谱激励,而开口剪切层振荡和尾部涡脱落则主要为低频线谱激励,因而在围壳加强结构设计中,要尽可能提高围壳的整体刚度和“关键”局部刚度,以提高围壳模态频率,降低低频振动响应。这里“关键”局部主要为开口/开孔周围以及围壳尾部,因为这些部位的流体激励主要为低频线谱激励,要避免发生水弹性共振。

      文献[1]对水下翼型结构的噪声测试结果表明,翼型结构的壳壁越厚,辐射声功率越小,但对于翼型结构的环肋,虽然使得总辐射声功率减小,但在个别频段,加环肋反而使声辐射增加,这说明在围壳布置加强结构时,应充分考虑其对声辐射特性的影响。一般来说,围壳加强结构的布置属拓扑优化问题,如Rais-Rohani等[127-128]就是通过拓扑优化的方法对复合材料围壳进行加强结构的优化布置。不过,文献[129]或许可以为围壳加强结构布置提供一种新的思路,即将现代围壳内部桅杆的升降装置设计为标准模块化升降装置,所有与桅杆升降相关的电缆、导轨等设备均内置于模块化升降装置内,模块化升降装置可以设计成刚度非常大的结构,并直接与艇体相连,这样就可以使以往需要围壳结构支撑的升降装置转变为围壳的加强结构,不仅能减小围壳空间体积,还有利于增加围壳整体结构刚度。

    • 水声材料技术在潜艇水动力噪声治理中的应用主要可以分为3类:去耦覆盖层技术、复合材料技术以及水声超材料技术。其中,水声超材料是一类新型的、且目前非常热门的水声材料技术,在水动力噪声控制领域具有非常好的应用前景。水声超材料自2000年Liu等[130]提出局域共振声子晶体的概念以来,已经取得了长足的进展,但距离潜艇水动力噪声治理的实际应用还有较大差距。西北工业大学的张燕妮等[131]对水声超材料研究进展进行了详尽的归纳与总结,由于篇幅有限,本文不再赘述,将主要聚焦于去耦覆盖层和复合材料在水动力噪声治理方面的研究进展进行回顾和总结。

      去耦覆盖层是敷设于水下结构外表面的一层柔性阻尼材料,主要通过特性阻抗失配以及阻尼特性,隔离水下结构表面振动激起的弹性压力波向水中传递,并抑制结构振动,进而降低水下结构辐射噪声[132]。去耦覆盖层技术已较为成熟,已被应用于潜艇机械噪声治理中[133]。根据其主要降噪机理,若在潜艇指挥室围壳表面敷设去耦覆盖层,理论上也可有效抑制围壳二次辐射噪声和围壳开口流激空腔噪声。俞孟萨[134]较早就提出过这种设想,但在实际应用中仍存在几个问题:其一,去耦覆盖层对低频噪声的抑制效果不佳,甚至还会增大低频噪声,而水动力噪声通常在低频段具有主要能量。Wang等[135]以敷设去耦覆盖层的加筋板为对象,从理论和实验这2个方面对去耦覆盖层的这一声学特性进行了较为详细的描述;Huang等[136]对去耦覆盖层的内腔结构进行了一系列优化,指出特殊构型的对称内腔可大幅改善去耦覆盖层的整体降噪效果,但对低频噪声(<250 Hz)甚至还有轻微的增加,可见去耦覆盖层的低频降噪问题仍有待解决。其二,高静水压会显著降低去耦合层的隔振降噪效果,这是因为以橡胶、聚氨酯等高分子聚合物为主要材料的去耦合层在高静水压下容易变“硬”,使阻抗失配效果降低,且高静水压容易使去耦合层的内腔结构产生较大形变,进而降低吸声效果[137]。其三,对于表面敷设柔性去耦合层的围壳壳板而言,在低频时壳板−去耦合层−水可以等效为质量−弹簧−质量,而在其共振频率附近反而会放大壳板的振动和噪声[138-139],加厚去耦合层或采用多层结构可以有效降低该共振频率[140-141],但这会使去耦合层变得厚重,进而破坏围壳的水动力外形。

      与去耦覆盖层敷设于水下结构表面的应用方式不同,复合材料通常作为水下结构的建造材料进行应用。作为复合材料技术在指挥室围壳的一个典型应用,曾号称“世界最安静潜艇”的德国212型潜艇的指挥室围壳便采用了以夹层玻璃纤维为主的复合材料建造,且其后续的212A型和214型潜艇继续沿用了复合材料围壳[142]。美国海军也曾在其“先进围壳项目”中对复合材料围壳进行了深入研究[4127-128],但最终却并未应用于其最新型的“弗吉尼亚”级核潜艇,而是仅对围壳前端填角采用了复合材料[76],可见复合材料围壳虽具备一定的优势,也还存在一些局限性。相比于传统金属材料围壳,复合材料围壳在噪声治理方面的优势主要体现在:易成型具有复杂线型的围壳结构,且保持很好的光顺性;具有较高的阻尼特性,有利于衰减结构振动[143];复合材料可设计成夹芯结构,中间芯层可采用具有吸声、阻尼、隔声等声学功能的材料,降低围壳声目标强度[144]。复合材料围壳的局限性主要在于整体刚度较小,容易发生流固耦合振动。由于涉及军事等原因,有关复合材料围壳的公开文献非常少,但国内外对于同样受强烈湍流脉动力作用的复合材料螺旋桨已有深入的研究,众多研究表明,复合材料使得螺旋桨的刚度较低,容易引起较为显著的弹性变形和流固耦合振动[145],因而可以推断复合材料围壳也存在这一问题。虽然复合材料相较于金属材料具有很高的比刚度和比强度,但其弹性模量并没有明显的优势,如以往在潜艇上使用最多的玻璃纤维加强复合材料的弹性模量要小于钢材,而高模碳纤维复合材料虽然具有高于钢材的弹性模量[146],但阻尼小,抑振效果不佳[147]。目前,解决复合材料围壳刚度和阻尼矛盾的方法主要有3种:一是通过玻碳混杂纤维加强复合材料,以使其刚度和阻尼都达到较高水平[148];二是合理设计加强纤维铺层角度,利用复合材料的各向异性,使特定方向上的刚度和阻尼达到较好的匹配[149];三是合理设计夹层结构和选用芯层材料,利用芯材的高阻尼和面板以及夹层结构的高模量形成功能互补[150]

    • 从水动力噪声研究的发展进程来看,其大部分理论和工具都移植自气动噪声研究,相对于气动噪声,水动力噪声研究还较为薄弱,这主要体现在水动力噪声需要考虑流体与结构强耦合的作用,而这一点在气动噪声中通常是不考虑的。围壳作为潜艇的噪声突出部位,其涉及到除射流噪声、旋转噪声和空泡噪声以外的大部分水动力噪声问题,因而使得围壳水动力噪声的机理和特性变得非常复杂,从本文对围壳水动力噪声机理的分析也可以看出,很多相关的噪声机理仍未完全揭示清楚,这也就导致了围壳水动力噪声治理的困难。笔者认为,要进一步降低围壳部位的水动力噪声,还需要针对以下几方面做进一步研究:

      1) 开口空腔的水弹性共振机理和声辐射特性研究。文献[29,40]的研究表明,结构弹性对空腔共振和声辐射具有显著影响,但其影响规律尚不明确,开展空腔的水弹性共振机理和辐射特性研究有助于更有效地抑制围壳的线谱噪声。

      2) “薄翼”形围壳设计和噪声特性研究。“薄翼”形围壳设计的出发点是在满足围壳具有足够的内部空间以容纳各类桅杆和其他设备的前提下,使围壳的相对宽度尽可能小,从水动力的角度不难理解,围壳宽度越小,其表面绕流产生的马蹄涡和尾涡强度越小,但关于围壳相对宽度对水动力噪声的影响还鲜有研究。

      3) 围壳加强结构布置对声辐射的影响研究。围壳结构刚度是围壳二次辐射噪声的一个重要影响因素,而加强结构布置与围壳结构刚度密切相关,研究围壳加强结构布置对声辐射的影响将有助于从结构动力学的角度降低围壳水动力噪声。

      4) 开口流激空腔噪声控制装置设计。现有的主动或被动空腔噪声控制装置几乎都有一定的局限性,或引入新的噪声源,或增大航行阻力,或减小开口面积等,研究一种能有效抑制空腔噪声,且不会影响其他性能的控制装置仍是亟待解决的一个问题。

Reference (150)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return