Citation: | XIA Y, LI H D, MEI Z Y. Longitudinal bending characteristics and design requirements of composite material superstructures[J]. Chinese Journal of Ship Research, 2023, 18(2): 74–80. DOI: 10.19693/j.issn.1673-3185.02471 |
[1] |
MOURITZ A P, GELLERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines[J]. Composite Structures, 2001, 53(1): 21–42. doi: 10.1016/S0263-8223(00)00175-6
|
[2] |
李晓文, 朱兆一, 李妍, 等. 复合材料–金属混合船舶极限强度研究综述[J]. 船舶力学, 2020, 24(5): 681–692. doi: 10.3969/j.issn.1007-7294.2020.05.014
LI X W, ZHU Z Y, LI Y, et al. A review on ultimate strength of composite-metal hybrid ships[J]. Journal of Ship Mechanics, 2020, 24(5): 681–692 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.05.014
|
[3] |
梅志远. 舰船复合材料结构物应用工程技术特点及内涵分析[J]. 中国舰船研究, 2021, 16(2): 1–8. doi: 10.19693/j.issn.1673-3185.02098
MEI Z Y. Characteristic analysis and prospect of applied engineering technology for composite structures of naval ships[J]. Chinese Journal of Ship Research, 2021, 16(2): 1–8 (in Chinese). doi: 10.19693/j.issn.1673-3185.02098
|
[4] |
中国人民解放军总装备部. 舰船通用规范总册: GJB 4000—2000[S]. 北京: 总装备部军标出版发行部, 2000.
PLA General Equipment Department. General specifications for naval ships general volum: GJB 4000−2000[S]. Beijing: PLA GED Standard Press, 2000 (in Chinese).
|
[5] |
MORSHEDSOLUK F, KHEDMATI M R. Ultimate strength of composite ships' hull girders in the presence of composite superstructures[J]. Thin-Walled Structures, 2016, 102: 122–138. doi: 10.1016/j.tws.2016.01.024
|
[6] |
王西典. 计入有效度的强力上层建筑设计研究[D]. 上海: 上海交通大学, 2015.
WANG X D. Research on design of effective superstructure concerning its effectiveness[D]. Shanghai: Shanghai Jiao Tong University, 2015 (in Chinese).
|
[7] |
王福花, 伍友军, 王德禹. 强力上层建筑的有效度及其设计[J]. 中国造船, 2006, 47(3): 22–29. doi: 10.3969/j.issn.1000-4882.2006.03.003
WANG F H, WU Y J, WANG D Y. Research on superstructure contributing to hull girder strength and its design[J]. Shipbuilding of China, 2006, 47(3): 22–29 (in Chinese). doi: 10.3969/j.issn.1000-4882.2006.03.003
|
[8] |
吕杰. 夹芯复合材料上层建筑结构强度研究[D]. 武汉: 武汉理工大学, 2016.
LV J. Strength analysis of composite sandwich superstructure[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese).
|
[9] |
CRAWFOR D. Theory of long ship's superstructures[J]. Trans, Society of Naval Architects and Marine Engineers, 1950, 4: 693.
|
[10] |
MUCKLE W. The influence of proportions on the behaviour of partial superstructures constructed of aluminium alloy[J]. Aluminium Development Association, 1995, 3: 250–271.
|
[11] |
NAAR H, VARSTA P, KUJALA P. A theory of coupled beams for strength assessment of passenger ships[J]. Marine Structures, 2004, 17(8): 590–611. doi: 10.1016/j.marstruc.2005.03.004
|
[12] |
李晓文, 朱兆一, 李妍, 等. 船舶复合材料上层建筑概念设计及力学行为研究[J]. 船舶工程, 2018, 40(5): 88–93. doi: 10.13788/j.cnki.cbgc.2018.05.088
LI X W, ZHU Z Y, LI Y, et al. Concept design and mechanical behavior research of composite superstructure for ships[J]. Ship Engineering, 2018, 40(5): 88–93 (in Chinese). doi: 10.13788/j.cnki.cbgc.2018.05.088
|
[13] |
于辉, 陈志鹏, 周芸, 等. 一体化复合材料上层建筑结构设计优化[J]. 中国造船, 2017, 58(2): 30–37. doi: 10.3969/j.issn.1000-4882.2017.02.004
YU H, CHEN Z P, ZHOU Y, et al. Optimal design of integrative superstructure in composite materials[J]. Ship-building of China, 2017, 58(2): 30–37 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.02.004
|
[14] |
中国人民解放军总装备部. 水面舰艇结构设计计算方法: GJB/Z 119-99[S]. 北京: 总装备部军标出版发行部, 1999.
PLA General Equipment Department. Method for structural design and strength calculation of naval surface ships: GJB/Z 119-99[S]. Beijing: PLA GED Standard Press, 1999 (in Chinese).
|
[15] |
陈倩, 张世联, 李源源. 铝合金上层建筑参与船体总纵弯曲的特性研究[J]. 船舶工程, 2011, 33(增刊2): 21-24, 28.
CHEN Q, ZHANG S L, LI Y Y. Characteristics study on longitudinal bending of aluminum alloy superstructure jointed with main hull[J]. Ship Engineering, 2011, 33(Supp 2): 21-24, 28 (in Chinese).
|