LI L, LYU J, XU Y B, et al. Study on influence laws of high-skew propeller parameters on blade vibration modes[J]. Chinese Journal of Ship Research, 2023, 18(5): 207–215. DOI: 10.19693/j.issn.1673-3185.02795
Citation: LI L, LYU J, XU Y B, et al. Study on influence laws of high-skew propeller parameters on blade vibration modes[J]. Chinese Journal of Ship Research, 2023, 18(5): 207–215. DOI: 10.19693/j.issn.1673-3185.02795

Study on influence laws of high-skew propeller parameters on blade vibration modes

More Information
  • Received Date: February 15, 2022
  • Revised Date: April 13, 2022
  • Official website online publication date: April 23, 2022
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objective  This study analyzes different high-skew propeller blade parameters to obtain the laws of their influence on blade vibration modes.
      Methods  A certain high-skew propeller is taken as the research object, a series of variable parameter schemes is designed and the finite element calculations for the vibration modes are conducted. The numerical method is validated effectively by adopting model tests. Through an analysis of the calculation results, the influence laws of the different design parameters on the blade natural frequency, attenuation coefficient and mode shapes are obtained.
      Results  The calculation results show that the blade natural frequency increases with its sectional thickness, area ratio and hub ratio, and decreases with its skew angle. Furthermore, the sectional thickness and skew have the greatest influence among the research parameters. The fluid-structure interaction effect has the greatest influence on the first order attenuation coefficient. The increase of the sectional thickness overall or at the outside radius is beneficial for reducing the first order attenuation coefficient. On the contrary, the increase of the area ratio, inward movement of skew balance point and large rake angle design is negative for first order attenuation coefficient reduction. The first order mode shape is almost the same for the series design scheme, which means that changes of the design parameters such as sectional thickness and skew angle mainly influence the blade's high order mode shapes.
      Conclusion  The results of this study can provide guidance and references for vibration mode optimization control in the design process of high-skew propellers.
  • [1]
    钱晓南. 舰船螺旋桨噪声[M]. 上海: 上海交通大学出版社, 2011.

    QIAN X N. Propeller noise of vessel[M]. Shanghai: Shanghai Jiao Tong University Press, 2011 (in Chinese).
    [2]
    CHASE N. Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller[D]. Iowa: University of Iowa, 2012.
    [3]
    WEI Y S, WANG Y S. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller's thrust and side-forces[J]. Journal of Sound and Vibration, 2013, 332(8): 2038–2056. doi: 10.1016/j.jsv.2012.12.001
    [4]
    蒋圣鹏, 黄子祥, 谢溪凌, 等. 桨−轴−船艉耦合系统分布式动力吸振器多频优化[J]. 噪声与振动控制, 2021, 41(4): 210–214, 269. doi: 10.3969/j.issn.1006-1355.2021.04.032

    JIANG S P, HUANG Z X, XIE X L, et al. Multi-frequency optimization of distributed dynamic vibration absorbers for propeller-shaft-stern coupling systems[J]. Noise and Vibration Control, 2021, 41(4): 210–214, 269 (in Chinese). doi: 10.3969/j.issn.1006-1355.2021.04.032
    [5]
    王路才, 周其斗. 桨叶振动对螺旋桨垂向激励下潜艇结构振动与声辐射的影响[J]. 中国舰船研究, 2020, 15(5): 161–166. doi: 10.19693/j.issn.1673-3185.01610

    WANG L C, ZHOU Q D. The effect on the vibration and acoustic radiation of the whole submarine due to the vibration of propeller blades under vertical excitation[J]. Chinese Journal of Ship Research, 2020, 15(5): 161–166 (in Chinese). doi: 10.19693/j.issn.1673-3185.01610
    [6]
    CARLTON J. Marine propellers and propulsion[M]. 3rd ed. Burlington: Elsevier, 2012.
    [7]
    娄本强, 嵇春艳. 船用螺旋桨流固耦合振动特性分析[J]. 大连理工大学学报, 2019, 59(2): 154–161.

    LOU B Q, JI C Y. FSI vibrations characteristics analysis of marine propeller[J]. Journal of Dalian University of Technology, 2019, 59(2): 154–161 (in Chinese).
    [8]
    杜鹏, 陈代明, 马君亭. 基于ANSYS的船用螺旋桨模态分析与优化设计[J]. 科技创新与应用, 2018(24): 21–24.

    DU P, CHEN D M, MA J T. Modal analysis and optimal design of Marine propeller based on ANSYS[J]. Technology Innovation and Application, 2018(24): 21–24 (in Chinese).
    [9]
    谈宇航, 彭伟才. 弹性螺旋桨流固耦合振动特性分析[J]. 中国舰船研究, 2020, 15(3): 102–110. doi: 10.19693/j.issn.1673-3185.01540

    TAN Y H, PENG W C. Analysis on the fluid-structure interaction vibration characteristics of the elastic propeller[J]. Chinese Journal of Ship Research, 2020, 15(3): 102–110 (in Chinese). doi: 10.19693/j.issn.1673-3185.01540
    [10]
    刘强, 王永生, 叶心华. 基于虚拟质量法的螺旋桨模态分析[C]//中国声学学会水声学分会2015年学术会议论文集. 武汉: 中国声学学会, 2015: 268−271.

    LIU Q, WANG Y S, YE X H. Modal analysis of marine propeller based on virtual mass method[C]// Proceedings of ASC 2015 Academical Conference on Hydroacoustics. Wuhan, China: The Acoustical Society of China, The Technical Committee on underwater acoustics, 2015: 268−271 (in Chinese).
    [11]
    YOUNG Y L. Fluid–structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799–818. doi: 10.1016/j.jfluidstructs.2007.12.010
    [12]
    PARK H S, CHOI S H, KIM N S. Identification of propeller singing phenomenon through vibration analysis of propeller blade[C]//Proceedings of the Fifteenth International Offshore and Polar Engineering Conference. Seoul, Republic of Korea: [s. n. ], 2005: 591−595.
    [13]
    李泓运, 王纬波, 曾志波. 复合材料螺旋桨的铺层对桨叶强度和干湿模态的影响[C]//第十四届船舶水下噪声学术讨论会. 重庆: 中国造船工程学会, 2013: 289−296.

    LI H Y, WANG W B, ZENG Z B. Effect of composite propeller layering on blade strength and dry/wet mode[C]// Proceedings of the 14th Symposium on Underwater Noise of Ships. Chongqing, China: The Chinese Society of Naval Architects and Marine Engineers (CSNAME), 2013: 289−296 (in Chinese).
    [14]
    许沛华. 涡发放条件下参数对螺旋桨振动噪声的影响[D]. 大连: 大连理工大学, 2019.

    XU P H. The effect of parameters on vibration and noise of propeller under vortex discharge condition[D]. Dalian: Dalian University of Technology, 2019 (in Chinese).
    [15]
    吴崇建, 王春旭, 陈志刚, 等. 螺旋桨低频振动声辐射特性研究−水母模态[J]. 中国舰船研究, 2020, 15(3): 75–80. doi: 10.19693/j.issn.1673-3185.01960

    WU C J, WANG C X, CHEN Z G, et al. The analysis of a propeller's low-frequency vibration and sound radiation characteristics: Jellyfish mode[J]. Chinese Journal of Ship Research, 2020, 15(3): 75–80 (in Chinese). doi: 10.19693/j.issn.1673-3185.01960
  • Cited by

    Periodical cited type(1)

    1. 高建. 一种新型锚杆监测装置的研究. 上海工程技术大学学报. 2024(01): 70-74 .

    Other cited types(1)

Catalog

    Article views (450) PDF downloads (59) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return