Volume 16 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
XIONG F F, CHEN J T, REN C K, et al. Recent advances in polynomial chaos method for uncertainty propagation[J]. Chinese Journal of Ship Research, 2021, 16(4): 19–36 doi: 10.19693/j.issn.1673-3185.02130
Citation: XIONG F F, CHEN J T, REN C K, et al. Recent advances in polynomial chaos method for uncertainty propagation[J]. Chinese Journal of Ship Research, 2021, 16(4): 19–36 doi: 10.19693/j.issn.1673-3185.02130

Recent advances in polynomial chaos method for uncertainty propagation

doi: 10.19693/j.issn.1673-3185.02130
  • Received Date: 2020-09-29
  • Accepted Date: 2021-06-09
  • Rev Recd Date: 2021-01-28
  • Available Online: 2021-06-09
  • Publish Date: 2021-08-10
  • Uncertainty exists widely in engineering design. As one of the key components of engineering design, uncertainty propagation and quantification has always been an important research topic. Polynomial chaos (PC) is a highly efficient uncertainty propagation method which has been widely studied and applied. Therefore, this paper reviews recent advances in the PC method. First, the fundamentals of PC are introduced, including the construction of an orthogonal polynomial basis and the calculation of PC coefficients. Second, strategies such as basis truncation, sparse reconstruction, sparse grid and multi-fidelity modeling are described to address the "curse of dimensionality" issue of PC. Local and global sensitivity analyses based on PC are then introduced. Finally, the research prospects of PC are given.
  • loading
  • [1]
    XIU D B, KARNIADAKIS G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619–644. doi: 10.1137/S1064827501387826
    XIU D B, KARNIADAKIS G E. Modeling uncertainty in flow simulations via generalized polynomial chaos[J]. Journal of Computational Physics, 2003, 187(1): 137–167. doi: 10.1016/S0021-9991(03)00092-5
    HASOFER A M, LIND N C. Exact and invariant second moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111–121. doi: 10.1061/JMCEA3.0001848
    KÖYLÜOǦLU H U, NIELSEN S R K. New approximations for SORM integrals[J]. Structural Safety, 1994, 13(4): 235–246. doi: 10.1016/0167-4730(94)90031-0
    ZHAO Y G, ONO T. New approximations for SORM: Part 1[J]. Journal of Engineering Mechanics, 1999, 125(1): 79–93. doi: 10.1061/(ASCE)0733-9399(1999)125:1(79)
    刘智益. 不确定性CFD模拟方法及其应用研究[D]. 北京: 华北电力大学, 2014.

    LIU Z Y. Investigation on non-deterministic methodologies and applications in CFD simulations[D]. Beijing: North China Electric Power University, 2014 (in Chinese).
    张宏涛, 赵宇飞, 李晨峰, 等. 基于多项式混沌展开的边坡稳定可靠性分析[J]. 岩土工程学报, 2010, 32(8): 1253–1259.

    ZHANG H T, ZHAO Y F, LI C F, et al. Reliability analysis of slope stability based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1253–1259 (in Chinese).
    胡晚亭, 吕令毅. 基于谱随机有限元的地基沉降可靠度分析[J]. 工程建设, 2018, 50(4): 11–15.

    HU W T, LYU L Y. Reliability analysis of foundation settlement based on spectral stochastic finite element method[J]. Engineering Construction, 2018, 50(4): 11–15 (in Chinese).
    许灿, 朱平, 刘钊, 等. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究[J]. 力学学报, 2020, 52(3): 763–773. doi: 10.6052/0459-1879-20-002

    XU C, ZHU P, LIU Z, et al. Research on multiscale stochastic mechanical properties prediction of plain woven carbon fiber composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 763–773 (in Chinese). doi: 10.6052/0459-1879-20-002
    PREMPRANEERACH P, HOVER F S, TRIANTAFYLLOU M S, et al. Uncertainty quantification in simulations of power systems: multi-element polynomial chaos methods[J]. Reliability Engineering & System Safety, 2010, 95(6): 632–646.
    沈艳霞, 卞高峰, 林京京. 基于多项式混沌观测器的电机系统自愈控制[J]. 控制工程, 2018, 25(10): 1785–1790.

    SHEN Y X, BIAN G F, LIN J J. Self-healing control for motor system based on polynomial chaos observer[J]. Control Engineering of China, 2018, 25(10): 1785–1790 (in Chinese).
    高印寒, 王天皓, 杨开宇, 等. 基于混沌多项式法的汽车线束串扰统计特性研究[EB/OL]. [2015-11-26]. http://www.paper.edu.cn/releasepaper/content/201511-659.

    GAO Y H, WANG T H, YANG K Y, et al. The study of automotive wiring harness crosstalk statistical properties based on chaos polynomial method[EB/OL]. [2015-11-26]. http://www.paper.edu.cn/releasepaper/content/201511-659 (in Chinese).
    TADIPARTHI V, BHATTACHARYA R. Robust LQR for uncertain discrete-time systems using polynomial chaos[C]//2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020: 4472–4477. DOI: 10.23919/ACC45564.2020.9147831.
    BHATTACHARYA R. A polynomial chaos framework for designing linear parameter varying control systems[C]//2015 American Control Conference (ACC). Chicago, IL, USA: IEEE, 2015.
    PENG Y B, GHANEM R, LI J. Polynomial chaos expansions for optimal control of nonlinear random oscillators[J]. Journal of Sound and Vibration, 2010, 329(18): 3660–3678. doi: 10.1016/j.jsv.2010.03.020
    SHAH H, HOSDER S, KOZIEL S, et al. Multi-fidelity robust aerodynamic design optimization under mixed uncertainty[J]. Aerospace Science and Technology, 2015, 45: 17–29. doi: 10.1016/j.ast.2015.04.011
    JONE B A, PARRISH N L, WERNER M S, et al. Post-maneuver collision probability estimation using polynomial chaos[J]. Advances in the Astronautical Sciences, 2014, 150: 261–280.
    宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2018, 39(2): 97–106.

    SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 97–106 (in Chinese).
    蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报, 2017, 38(3): 490–497.

    CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 490–497 (in Chinese).
    魏骁, 冯佰威, 刘祖源, 等. 基于多维多项式混沌展开法的船舶不确定性优化设计[J]. 船舶工程, 2018, 40(1): 42–47.

    WEI X, FENG B W, LIU Z Y, et al. Ship uncertainty optimization design based on multidimensional polynomial chaos expansion method[J]. Ship Engineering, 2018, 40(1): 42–47 (in Chinese).
    梁霄, 陈江涛, 王瑞利, 等. 非接触水下爆炸下舰船冲击环境的不确定度量化[J]. 中国舰船研究, 2020, 15(6): 128–136.

    LIANG X, CHEN J T, WANG R L, et al. The uncertainty quantification of ship shock environment subjected to non-contact underwater explosion[J]. Chinese Journal of Ship Research, 2020, 15(6): 128–136.
    李冬琴, 蒋志勇, 赵欣. 多维随机不确定性下的船舶多学科稳健设计优化研究[J]. 船舶工程, 2015, 37(11): 61–66.

    LI D Q, JIANG Z Y, ZHAO X. Ship Multidisciplinary robust design optimization under multidimensional stochastic uncertainties[J]. Ship Engineering, 2015, 37(11): 61–66 (in Chinese).
    李冬琴, 赵欣, 管义锋. 基于多维PC扩展的多学科稳健优化算法研究[J]. 舰船科学技术, 2016, 38(1): 132–136, 149. doi: 10.3404/j.issn.1672-7649.2016.1.028

    LI D Q, ZHAO X, GUAN Y F. Robust multidisciplinary design optimization based on multidimensional polynomial chaos expansion[J]. Ship Science and Technology, 2016, 38(1): 132–136, 149 (in Chinese). doi: 10.3404/j.issn.1672-7649.2016.1.028
    TEMPLETON B A, COX D E, KENNY S P, et al. On controlling an uncertain system with polynomial chaos and H2 control design[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(6): 061304. doi: 10.1115/1.4002474
    DU Y C, BUDMAN H, DUEVER T. Robust self-tuning control design under probabilistic uncertainty using polynomial chaos expansion-based Markov models[J]. IFAC-PapersOnLine, 2018, 51(18): 750–755. doi: 10.1016/j.ifacol.2018.09.273
    李伟平, 王磊, 张宝珍, 等. 基于不确定性和模糊理论的汽车平顺性优化[J]. 机械科学与技术, 2013, 32(5): 636–640.

    LI W P, WANG L, ZHANG B Z, et al. Optimizing vehicle ride comfort based on uncertainty theory and fuzzy theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(5): 636–640 (in Chinese).
    姜潮. 基于区间的不确定性优化理论与算法[D]. 长沙: 湖南大学, 2008.

    JIANG C. Theories and algorithms of uncertain optimization based on interval[D]. Changsha: Hunan University, 2008 (in Chinese).
    锁斌. 基于证据理论的不确定性量化方法及其在可靠性工程中的应用研究[D]. 绵阳: 中国工程物理研究院, 2012.

    SUO B. Uncertainty quantification method based on evidence theory and its application in reliability engineering[D]. Mianyang: China Academy of Engineering Physics, 2012.
    曹立雄. 基于证据理论的结构不确定性传播与反求方法研究[D]. 长沙: 湖南大学, 2019.

    CAO L X. Research on structural uncertainty propagation and inverse method based on evidence theory[D]. Changsha: Hunan University, 2019 (in Chinese).
    ASME. Guide for verification and validation in computational solid mechanics: ASME V & V 10-2006[S]. New York: American Society of Mechanical Engineers, 2006.
    MELDI M, SALVETTI M V, SAGAUT P. Quantification of errors in large-eddy simulations of a spatially evolving mixing layer using polynomial chaos[J]. Physics of Fluids, 2012, 24(3): 035101. doi: 10.1063/1.3688135
    王瑞利, 刘全, 温万治. 非嵌入式多项式混沌法在爆轰产物JWL参数评估中的应用[J]. 爆炸与冲击, 2015, 35(1): 9–15. doi: 10.11883/1001-1455(2015)01-0009-07

    WANG R L, LIU Q, WEN W Z. Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL[J]. Explosion and Shock Waves, 2015, 35(1): 9–15 (in Chinese). doi: 10.11883/1001-1455(2015)01-0009-07
    赵辉, 胡星志, 张健, 等. 湍流模型系数不确定度对翼型绕流模拟的影响[J]. 航空学报, 2019, 40(6): 63–73.

    ZHAO H, HU X Z, ZHANG J, et al. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 63–73 (in Chinese).
    刘全, 王瑞利, 林忠. 非嵌入式多项式混沌方法在拉氏计算中的应用[J]. 固体力学学报, 2013, 33(增刊 1): 224–233.

    LIU Q, WANG R L, LIN Z. Uncertainty quantification for Lagrangian computation using non-intrusive polynomial chaos[J]. Acta Mechnica Solida Sinica, 2013, 33(Supp 1): 224–233 (in Chinese).
    ENDERLE B, RAUCH B, GRIMM F, et al. Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: a case study[J]. Combustion and Flame, 2019, 213: 26–38.
    SCHAEFER J, HOSDER S, WEST T, et al. Uncertainty quantification of turbulence model closure coefficients for transonic wall-bounded flows[J]. AIAA Journal, 2016, 55(1): 1–19.
    SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framework for industrial-scale aerodynamic analysis[C]//AIAA SciTech Forum, 7-11 January 2019. San Diego, California: AIAA, 2019.
    LI J, GAO Z H, HUANG J Y, et al. Robust design of NLF airfoils[J]. Chinese Journal of Aeronautics, 2013, 26(2): 309–318. doi: 10.1016/j.cja.2013.02.007
    WU X J, ZHANG W W, SONG S F. Robust aerodynamic shape design based on an adaptive stochastic optimization framework[J]. Structural and Multidisciplinary Optimization, 2017, 57(2): 639–651.
    EL MAANI R, MAKHLOUFI A, RADI B, et al. Reliability-based design optimization with frequency constraints using a new safest point approach[J]. Engineering Optimization, 2018, 50(10): 1715–1732. doi: 10.1080/0305215X.2017.1416109
    CHEN Z Z, WU Z H, LI X K, et al. A multiple-design-point approach for reliability-based design optimization[J]. Engineering Optimization, 2019, 51(5): 875–895. doi: 10.1080/0305215X.2018.1500561
    ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles[R]. Hampton, VA: NASA, 2002.
    LIE W, YANG S Y, BAI Y N, et al. Efficient robust optimization based on polynomial chaos and Tabu search algorithm[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1): 145–150.
    MANDUR J, BUDMAN H. A polynomial-chaos based algorithm for robust optimization in the presence of Bayesian Uncertainty[J]. IFAC Proceedings Volumes, 2012, 45(15): 549–554. doi: 10.3182/20120710-4-SG-2026.00041
    HUANG Y C, LI H Y, DU X, et al. Mars entry trajectory robust optimization based on evidence under epistemic uncertainty[J]. Acta Astronautica, 2019, 163: 225–237.
    ONORATO G, LOEVEN G J A, GHORBANIASL G, et al. Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics[C]//European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010. Lisbon, Portugal: [s.n.], 2010.
    XIONG F F, CHEN S S, XIONG Y. Dynamic system uncertainty propagation using polynomial chaos[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1156–1170. doi: 10.1016/j.cja.2014.08.010
    WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897–936. doi: 10.2307/2371268
    WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno,NV, USA: AIAA, 2006.
    ZHANG G, BAI J J, WANG L X, et al. Uncertainty analysis of arbitrary probability distribution based on Stieltjes Process[C]//IEEE 21st Workshop on Signal and Power Integrity (SPI). Baveno, Italy: IEEE, 2017.
    XU Y J, MILI L, SANDU A, et al. Propagating uncertainty in power system dynamic simulations using polynomial chaos[J]. IEEE Transactions on Power Systems, 2019, 34(1): 338–348. doi: 10.1109/TPWRS.2018.2865548
    OLADYSHKIN S, NOWAK W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2012, 106: 179–190.
    WANG F G, XIONG F F, JIANG H, et al. An enhanced data-driven polynomial chaos method for uncertainty propagation[J]. Engineering Optimization, 2018, 50(2): 273–292. doi: 10.1080/0305215X.2017.1323890
    SOCIE D F. Seminar notes: probabilistic aspects of fatigue[M]. Illinois: University of Illinois Press, 2003.
    苏松松, 冷小磊. 考虑空间相关性的飞行器气动噪声响应分析[J]. 江苏航空, 2011(增刊 1): 115–117.

    SU S S, LENG X L. Aerodynamic noise response analysis of aircraft considering spatial correlation[J]. Jiangsu Aviation, 2011(Supp 1): 115–117 (in Chinese).
    RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489–494.
    ROSENBLATT M. Remarks on a multivariate transformation[J]. Annals of Mathematical Statistics, 1952, 23(3): 470–472. doi: 10.1214/aoms/1177729394
    KIUREGHIAN A D, LIU P L. Structural reliability under incomplete probability information[J]. Journal of Engineering Mechanics, 1986, 112(1): 85–104. doi: 10.1061/(ASCE)0733-9399(1986)112:1(85)
    LIN Q Z, XIONG F F, WANG F G, et al. A data-driven polynomial chaos method considering correlated random variables[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 2131–2147.
    PAULSON J A, BUEHLER E A, MESBAH A. Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems[J]. IFAC-PapersOnLine, 2017, 50(1): 3548–3553. doi: 10.1016/j.ifacol.2017.08.954
    WANG G Z, XIN H H, WU D, et al. Data-driven arbitrary polynomial chaos-based probabilistic load flow considering correlated uncertainties[J]. IEEE Transactions on Power Systems, 2019, 34(4): 3274–3276. doi: 10.1109/TPWRS.2019.2908089
    XIONG F F, CHEN W, XIONG Y, et al. Weighted stochastic response surface method considering sample weights[J]. Structural and Multidisciplinary Optimization, 2011, 43(6): 837–849. doi: 10.1007/s00158-011-0621-3
    HU C, YOUN B D. Adaptive-sparse polynomial chaos expansion for reliability analysis and design of complex engineering systems[J]. Structural and Multidisciplinary Optimization, 2011, 43(3): 419–442. doi: 10.1007/s00158-010-0568-9
    MONTGOMERY D C. Design and Analysis of Experiments[M]. New York: Wiley, 1976.
    SMOLYAK S A. Quadrature and interpolation formulas for tensor products of certain classes of functions[J]. Doklady Akademii Nauk, 1963, 148(5): 1042–1045.
    XIONG F F, GREENE S, CHEN W, et al. A new sparse grid based method for uncertainty propagation[J]. Structural and Multidisciplinary Optimization, 2010, 41(3): 335–349. doi: 10.1007/s00158-009-0441-x
    ISUKAPALLI S S. Uncertainty analysis of transport-transformation models[D]. New Brunswick: The State University of New Jersey, 1999.
    ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems[J]. Risk Analysis, 2000, 20(5): 591–602. doi: 10.1111/0272-4332.205054
    HOSDER S, WALTERS R, BALCH M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Honolulu, Hawaii: AIAA, 2007.
    WEI D L, CUI Z S, CHEN J. Uncertainty quantification using polynomial chaos expansion with points of monomial cubature rules[J]. Computers & Structures, 2008, 86(23–24): 2102–2108.
    HAMPTON J, DOOSTAN A. Basis adaptive sample efficient polynomial chaos (BASE-PC)[J]. Journal of Computational Physics, 2018, 371: 20–49. doi: 10.1016/j.jcp.2018.03.035
    BLATMAN G, SUDRET B. Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[J]. Comptes Rendus Mécanique, 2008, 336(6): 518–523.
    BLATMAN G, SUDRET B. Adaptive sparse polynomial chaos expansion based on least angle regression[J]. Journal of Computational Physics, 2011, 230(6): 2345–2367. doi: 10.1016/j.jcp.2010.12.021
    王丰刚. 面向飞行器设计的混沌多项式方法研究[D]. 北京: 北京理工大学, 2019.

    WANG F G. Research on polynomial chaos method for flight vehicle design[D]. Beijing: Beijing Institute of Technology, 2019 (in Chinese).
    陈光宋, 钱林方, 吉磊. 身管固有频率高效全局灵敏度分析[J]. 振动与冲击, 2015, 34(21): 31–36.

    CHEN G R, QIAN L F, JI L. An effective global sensitivity analysis method for natural frequencies of a barrel[J]. Journal of Vibration and Shock, 2015, 34(21): 31–36 (in Chinese).
    CHENG K, LU Z Z. Sparse polynomial chaos expansion based on D-MORPH regression[J]. Applied Mathematics and Computation, 2018, 323: 17–30. doi: 10.1016/j.amc.2017.11.044
    DIAZ P, DOOSTAN A, HAMPTON J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 336: 640–666.
    TSILIFIS P, HUAN X, SAFTA C, et al. Compressive sensing adaptation for polynomial chaos expansions[J]. Journal of Computational Physics, 2019, 380: 29–47. doi: 10.1016/j.jcp.2018.12.010
    陈江涛, 章超, 刘骁, 等. 基于稀疏多项式混沌方法的不确定性量化分析[J]. 航空学报, 2020, 41(3): 169–177.

    CHEN J T, ZHANG C, LIU X, et al. Uncertainty quantification analysis with sparse polynomial chaos method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 169–177 (in Chinese).
    GAO X F, WANG Y J, SPOTTS N, et al. Fast uncertainty quantification in engine nacelle inlet design using a reduced dimensional polynomial chaos approach[C]//AIAA/SAE/ASEE Joint Propulsion Conference. Salt Lake City, UT: AIAA, 2016.
    WINOKUR J G. Adaptive sparse grid approaches to polynomial chaos expansions for uncertainty quantification[D]. Durham: Duke University, 2015.
    WU X J, ZHANG W W, SONG S F, et al. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties[J]. Chinese Journal of Aeronautics, 2018, 31(5): 997–1011. doi: 10.1016/j.cja.2018.03.011
    XIONG F F, XUE B, ZHANG Y, et al. Polynomial chaos expansion based robust design optimization[C]//2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering. Xi'an, China: IEEE, 2011: 868-873.
    KENNEDY M C, O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika, 2000, 87(1): 1–13. doi: 10.1093/biomet/87.1.1
    NG L W T, ELDRED M. Multifidelity Uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu, USA: AIAA, 2012.
    PALAR P S, TSUCHIYA T, PARKS G T. Multi-fidelity non-intrusive polynomial chaos based on regression[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 579–606. doi: 10.1016/j.cma.2016.03.022
    MATTEO B. Multi-fidelity surrogate modelling with polynomial chaos expansions[D]. Zurich, Switzerland: ETH ,2016.
    YAN L, ZHOU T. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems[J]. Journal of Computational Physics, 2019, 381: 110–128. doi: 10.1016/j.jcp.2018.12.025
    CHENG K, LU Z Z, ZHEN Y. Multi-level multi-fidelity sparse polynomial chaos expansion based on Gaussian process regression[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 360–377. doi: 10.1016/j.cma.2019.02.021
    WANG F G, XIONG F F, CHEN S S, et al. Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling[J]. Structural and Multidisciplinary Optimization, 2019, 60(4): 1583–1604. doi: 10.1007/s00158-019-02287-7
    REN C K, XIONG F F, MO B, et al. Design sensitivity analysis with polynomial chaos for robust optimization[J]. Structural and Multidisciplinary Optimization, 2021, 63(4): 357–373.
    SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964–979.
    PALAR P S, ZUHAL L R, SHIMOYAMA K, et al. Global sensitivity analysis via multi-fidelity polynomial chaos expansion[J]. Reliability Engineering & System Safety, 2018, 170: 175–190.
    CHENG K, LU Z Z. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 2018, 194: 86–96.
    王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 64–77.

    WANG H, YAN Z, XU X Y, et al. Global sensitivity analysis for islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 64–77 (in Chinese).
    卜令泽. 全局灵敏度与结构可靠度分析——基于偏最小二乘回归的多项式混沌展开方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    BU L Z. Global sensitivity and structural reliability analysis: research on partial least squares-based polynomial chaos expansion method[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
    孙佳, 陈光宋, 钱林方, 等. 自动装填机构刚度混合全局灵敏度分析[J]. 南京理工大学学报, 2019, 43(2): 135–140.

    SUN J, CHEN G S, QIAN L F, et al. Combined global sensitivity analysis for stiffness of automatic loading mechanism[J]. Journal of Nanjing University of Science and Technology, 2019, 43(2): 135–140 (in Chinese).
    王娟. 基于替代模型的可靠性与灵敏度分析方法研究[D]. 南京: 南京理工大学, 2018.

    WANG J. Research on methods of reliability and sensitivity analysis based on meta-models[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese).
    梁霄, 王瑞利. 混合不确定度量化方法及其在计算流体动力学迎风格式中的应用[J]. 爆炸与冲击, 2016, 36(4): 509–515. doi: 10.11883/1001-1455(2016)04-0509-07

    LIANG X, WANG R L. Mixed uncertainty quantification and its application in upwind scheme for computational fluid dynamics (CFD)[J]. Explosion and Shock Waves, 2016, 36(4): 509–515 (in Chinese). doi: 10.11883/1001-1455(2016)04-0509-07
    KARANKI D R, KUSHWAHA H S, VERMA A K, et al. Uncertainty analysis based on probability bounds (P-box) approach in probabilistic safety assessment[J]. Risk Analysis, 2010, 29(5): 662–675.
    LIU X, YIN L R, HU L, et al. An efficient reliability analysis approach for structure based on probability and probability box models[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 167–181. doi: 10.1007/s00158-017-1659-7
    DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1–22. doi: 10.1111/j.2517-6161.1977.tb01600.x
    YIN S W, YU D J, LUO Z, et al. An arbitrary polynomial chaos expansion approach for response analysis of acoustic systems with epistemic uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 280–302. doi: 10.1016/j.cma.2017.12.025
    胡钩铭. 一种面向随机与认知不确定性的稳健优化设计方法研究[D]. 绵阳: 中国工程物理研究院, 2012.

    HU G M. A methodology research on robust design optimization considering aleatory and epistemic uncertainty[D]. Mianyang: China Academy of Engineering Physics, 2012 (in Chinese).
    DEY S, MUKHOPADHYAY T, KHODAPARAST H H, et al. Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion[J]. Applied Mathematical Modelling, 2016, 40(7–8): 4412–4428. doi: 10.1016/j.apm.2015.11.038
    ABDO H, FLAUS J M. Uncertainty quantification in dynamic system risk assessment: a new approach with randomness and fuzzy theory[J]. International Journal of Production Research, 2016, 54(19): 5862–5885. doi: 10.1080/00207543.2016.1184348
    ZAMAN K, RANGAVAJHALA S, MCDONALD M P, et al. A Probabilistic approach for representation of interval uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(1): 117–130.
    姜潮, 刘丽新, 龙湘云, 等. 一种概率−区间混合结构可靠性的高效计算方法[J]. 计算力学学报, 2013, 30(5): 605–609. doi: 10.7511/jslx201305002

    JIANG C, LIU L X, LONG X Y, et al. An efficient reliability analysis method for structures with probability-interval mixed uncertainty[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 605–609 (in Chinese). doi: 10.7511/jslx201305002
    SANKARARAMAN S, MAHADEVAN S. Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering & System Safety, 2011, 96(7): 814–824.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (237) PDF downloads(73) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint