Volume 17 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
DONG W K, CHEN M X. Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure[J]. Chinese Journal of Ship Research, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186
Citation: DONG W K, CHEN M X. Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure[J]. Chinese Journal of Ship Research, 2022, 17(1): 132–140 doi: 10.19693/j.issn.1673-3185.02186

Sound absorption performance analysis of anechoic coating under hydrostatic pressure considering cavity pressure

doi: 10.19693/j.issn.1673-3185.02186
  • Received Date: 2020-11-17
  • Rev Recd Date: 2021-02-07
  • Available Online: 2021-08-25
  • Publish Date: 2022-03-02
    © 2022 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  An underwater anechoic coating layer laid on the hull surface of a submarine is squeezed under the action of high hydrostatic pressure, changing its shape and material parameters, which has a great impact on sound absorption performance. Therefore, studying the sound absorption performance of underwater anechoic coating layers under high hydrostatic pressure is of great significance for the stealth performance of submarines.  Methods  Considering the effects of cavity pressure on deformation and sound absorption performance of the annechoic coating layer under hydrostatic pressure, this paper uses axisymmetric finite element simulation to calculate the deformation of single cell with a cylindrical cavity, and the sound absorption coefficient curve is then obtained by converting the deformations into one-dimensional theoretical model. After that, structural-acoustic coupling analysis with the geometric model after deformation is carried out to verify the effectiveness of theorectical and numerical approaches for soloving the sound absorption coefficient.  Results  The results indicate that, without considering the changes of material parameters, the unit cells of the layer shrink axially and the cavity shrinks radially under hydrostatic pressure, while the sound absorption curve moves towards high frequency. The air pressure inside the cavity resists contraction under the action of hydrostatic pressure, weakening the trend of moving to high frequency. The sharp valley in the sound absorption curve is caused by the excitation of cavity mode.  Conclusions  The results of this study can provide valuable references for predicting the sound absorption performance of an anechoic coating layer under hydrostatic pressure.
  • loading
  • [1]
    GAUNAURD G. One-dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities[J]. The Journal of the Acoustical Society of America, 1977, 62(2): 298–307. doi: 10.1121/1.381528
    朱蓓丽, 黄修长. 潜艇隐身关键技术—声学覆盖层的设计[M]. 上海: 上海交通大学出版社, 2012.

    ZHU B L, HUANG X C. Key Technology of Submarine Acoustic Stealth: Design of Acoustic Coating[M]. Shanghai: Shanghai Jiao Tong University Press, 2012 (in Chinese).
    CERVENKA P, CHALLANDE P. A new efficient algorithm to compute the exact reflection and transmission factors for plane waves in layered absorbing media (liquids and solids)[J]. The Journal of the Acoustical Society of America, 1991, 89(4): 1579–1589. doi: 10.1121/1.400993
    何世平. 粘弹性圆柱管中波的传播研究及吸声覆盖层声学特性研究[D]. 上海: 上海交通大学, 2004.

    HE S P. Research of wave propagation in viscoelastic tube and analysis of acoustic characteristics of anechoic coating[D]. Shanghai: Shanghai Jiao Tong University, 2004 (in Chinese).
    何世平, 汤渭霖, 范军. 无限长粘弹性圆柱管中轴对称波的传播模式和衰减[J]. 声学学报, 2005, 30(3): 249–254. doi: 10.3321/j.issn:0371-0025.2005.03.009

    HE S P, TANG W L, FAN J. Axisymmetric wave propagation and attenuation along an infinite viscoelastic cylindrical tube[J]. Acta Acustica, 2005, 30(3): 249–254 (in Chinese). doi: 10.3321/j.issn:0371-0025.2005.03.009
    汤渭霖, 何世平, 范军. 含圆柱形空腔吸声覆盖层的二维理论[J]. 声学学报, 2005, 30(4): 289–295. doi: 10.3321/j.issn:0371-0025.2005.04.001

    TANG W L, HE S P, FAN J. Two-dimensional model for acoustic absorption of viscoelastic coating containing cylindrical holes[J]. Acta Acustica, 2005, 30(4): 289–295 (in Chinese). doi: 10.3321/j.issn:0371-0025.2005.04.001
    姜闻文, 陈光冶, 朱彦. 静水压变化下橡胶结构吸声性能的计算与分析[J]. 噪声与振动控制, 2006, 26(5): 55–57, 73. doi: 10.3969/j.issn.1006-1355.2006.05.016

    JIANG W W, CHEN G Y, ZHU Y. Computation and analysis of sound absorption performance of rubber structures under variable hydraulic pressure[J]. Noise and Vibration Control, 2006, 26(5): 55–57, 73 (in Chinese). doi: 10.3969/j.issn.1006-1355.2006.05.016
    陶猛, 卓琳凯. 静水压力下吸声覆盖层的声学性能分析[J]. 上海交通大学学报, 2011, 45(9): 1340–1344, 1350.

    TAO M, ZHUO L K. Effect of hydrostatic pressure on acoustic performance of sound absorption coating[J]. Journal of Shanghai Jiao Tong University, 2011, 45(9): 1340–1344, 1350 (in Chinese).
    张冲, 何世平, 易少强. 静压下球形空腔吸声覆盖层的建模与性能分析[J]. 船舶力学, 2016, 20(7): 909–916. doi: 10.3969/j.issn.1007-7294.2016.07.014

    ZHANG C, HE S P, YI S Q. Model and absorption performance of anechoic coating embedding sphere cavities[J]. Journal of Ship Mechanics, 2016, 20(7): 909–916 (in Chinese). doi: 10.3969/j.issn.1007-7294.2016.07.014
    杨立军, 张冲, 楼京俊, 等. 静压下多层材料椭球形空腔吸声覆盖层的吸声性能分析[J]. 舰船科学技术, 2017, 39(3): 54–57. doi: 10.3404/j.issn.1672-7619.2017.03.011

    YANG L J, ZHANG C, LOU J J, et al. Absorption performance of the multi-layered material anechoic coating embedding spheroidicity cavities[J]. Ship Science and Technology, 2017, 39(3): 54–57 (in Chinese). doi: 10.3404/j.issn.1672-7619.2017.03.011
    黄修长, 朱蓓丽, 胡碰, 等. 静水压力下橡胶动态力学参数的声管测量方法[J]. 上海交通大学学报, 2013, 47(10): 1503–1508, 1519.

    HUANG X C, ZHU B L, HU P, et al. Measurement of dynamic properties of rubber under hydrostatic pressure by water-filled acoustic tube[J]. Journal of Shanghai Jiao Tong University, 2013, 47(10): 1503–1508, 1519 (in Chinese).
    陶猛, 江坤. 基于数值-解析法测量静压条件下阻尼材料动态力学参数[J]. 振动与冲击, 2016, 35(7): 96–101.

    TAO M, JIANG K. Dynamic parameters measurement of damping materials under hydrostatic pressure based on a hybrid numerical-analytical method[J]. Journal of Vibration and Shock, 2016, 35(7): 96–101 (in Chinese).
    YE C Z, LIU X W, XIN F X, et al. Influence of hole shape on sound absorption of underwater anechoic layers[J]. Journal of Sound and Vibration, 2018, 426: 54–74. doi: 10.1016/j.jsv.2018.04.008
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (571) PDF downloads(68) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint