Haipeng ZHANG, Donghan ZHANG, Chunyu GUO, Lianzhou WANG, Tian LIU. Numerical analysis of the scale effect of the nominal wake field of KCS[J]. Chinese Journal of Ship Research, 2017, 12(1): 1-7. doi: 10.3969/j.issn.1673-3185.2017.01.001
Citation: Haipeng ZHANG, Donghan ZHANG, Chunyu GUO, Lianzhou WANG, Tian LIU. Numerical analysis of the scale effect of the nominal wake field of KCS[J]. Chinese Journal of Ship Research, 2017, 12(1): 1-7. doi: 10.3969/j.issn.1673-3185.2017.01.001

Numerical analysis of the scale effect of the nominal wake field of KCS

doi: 10.3969/j.issn.1673-3185.2017.01.001
  • Received Date: 2016-07-05
    Available Online: 2016-12-28
  • Publish Date: 2017-01-07
    © 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • In order to study the scale effect of the nominal wake field, the viscous flow field of KCS is studied without considering the free surface effect, and the nominal wake fields of KCS at different scales including full scale are solved numerically using the RANS method and the SST k-ω turbulence model. By comprehensively comparing the computed results with experimental data, the scale effect of the nominal wake field is further investigated. This shows that the reciprocal of the mean axial wake fraction at each radius exhibits a near-linear dependence on the Reynolds number in a logarithmic scale; for the nominal wake field of the propeller disc of KCS without a propeller, two wake peaks exit, and the amplitude of the axial wake peak decreases with the increase of the Reynolds number, which is conducive to a decrease in propeller exciting force and propeller cavitation; the scale effect of the small scale model is more obvious, and the scale effect of the mean axial wake fraction in the inner area is stronger than it is in the outer area.
  • loading
  • [1]
    LEE J H, LEE K J, PARK H G, et al. Possibility of air-filled rubber membrane for reducing hull exciting pressure induced by propeller cavitation[J]. Ocean Engineering, 2015, 103:160-170. doi: 10.1016/j.oceaneng.2015.04.073
    许晶, 周连第, 高秋新.标称伴流尺度效应的数值模拟[J].水动力学研究与进展, 1998, 13(4):481-490. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ199804014.htm

    XU J, ZHOU L D, GAO Q X. Numerical simulation of scale effect on nominal wake[J]. Journal of Hydrodynamics, 1998, 13(4):481-490(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ199804014.htm
    黄家彬, 陈霞萍, 朱仁传, 等.基于CFD的标称伴流场尺度效应研究[C]//第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会论文集.北京:中国力学学会, 2009.
    王展智, 熊鹰, 黄政, 等.双桨船轴向伴流场尺度效应的数值研究[J].上海交通大学学报, 2015, 49(4):457-463. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504008.htm

    WANG Z Z, XIONG Y, HUANG Z, et al. Numerical study on scale effect of axial wake of twin screw ship[J]. Journal of Shanghai Jiaotong University, 2015, 49(4):457-463(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201504008.htm
    郭春雨, 张琪, 陈鸽, 等.基于SDM方法的船艉伴流场尺度效应研究与修正[J].中国舰船研究, 2015, 10(6):1-7. http://www.ship-research.com/CN/abstract/abstract1447.shtml

    GUO C Y, ZHANG Q, CHEN G, et al. Research and revision on the scale effect of the wake field based on the method of SDM[J]. Chinese Journal Ship Research, 2015, 10(6):1-7(in Chinese). http://www.ship-research.com/CN/abstract/abstract1447.shtml
    张恒, 詹成胜, 刘祖源, 等.基于船舶阻力性能的船型主尺度参数敏感度分析[J].船舶工程, 2015, 37(6):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-CANB201506003.htm

    ZHANG H, ZHAN C S, LIU Z Y, et al. Analysis of sensitivity of ship type main dimension parameters based on ship resistance performance[J]. Ship Engineering, 2015, 37(6):11-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CANB201506003.htm
    SHEN Z R, WAN D C, CARRICA P M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering[J]. Ocean Engineering, 2015, 108:287-306. doi: 10.1016/j.oceaneng.2015.07.035
    FUJISAWA J, UKON Y, KUME K, et al. Local velocity field measurements around the KCS model (SRI M.S. No.631) in the SRI 400 m towing tank:ship performance division report:00-003-02[R].[S.l.]:Ship Research Institute, 2000.
    WILOX D C. Turbulence modeling for CFD[M]. La Canada, California:DCW Industries, Inc., 1998.
    SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
    MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
    KIM W J, VAN S H, KIM D H. Measurement of flows around modern commercial ship models[J]. Experiments in Fluids, 2001, 31(5):567-578. doi: 10.1007/s003480100332
    YANG H U, KIM B N, YOO J H, et al. Wake comparison between model and full scale ships using CFD[J]. Journal of the Society of Naval Architects of Korea, 2010, 47(2):150-162. doi: 10.3744/SNAK.2010.47.2.150
    WANG Z Z, XIONG Y, WANG R, et al. Numerical study on scale effect of nominal wake of single screw ship[J]. Ocean Engineering, 2015, 104:437-451. doi: 10.1016/j.oceaneng.2015.05.029
    KIM D, LEE K, SEONG W. Non-cavitating propeller noise modeling and inversion[J]. Journal of Sound and Vibration, 2014, 333(24):6424-6437. doi: 10.1016/j.jsv.2014.07.025
    SASAJIMA H, TANAKA I. On the estimation of wakes of ships[C]//Proceedings of 11th ITTC. Tokyo, Japan:ITTC, 1966:140-144.
    SCHUILING B, LAFEBER F H, VAN DER PLOEG A, et al. The influence of the wake scale effect on the prediction of hull pressures due to cavitating propellers[C]//Proceedings of the Second International Symposium on Marine Propulsors. Hamburg, Germany:[s.n.], 2011.
  • 2017-1-1_en.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (250) PDF downloads(180) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint