SHI Q Q, NIU W D, ZHANG R F, et al. Review and prospects of underwater glider path planning[J]. Chinese Journal of Ship Research, 2023, 18(1): 29–42, 51. DOI: 10.19693/j.issn.1673-3185.02435
Citation: SHI Q Q, NIU W D, ZHANG R F, et al. Review and prospects of underwater glider path planning[J]. Chinese Journal of Ship Research, 2023, 18(1): 29–42, 51. DOI: 10.19693/j.issn.1673-3185.02435

Review and prospects of underwater glider path planning

More Information
  • Received Date: June 29, 2021
  • Revised Date: September 14, 2021
  • Official website online publication date: October 17, 2021
© 2023 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The underwater glider (UG) is a new type of underwater vehicle driven by buoyancy, which has the advantages of low energy consumption, high efficiency, long-endurance, low cost, reusability and so on. The UG can also meet the needs of long-term and large-scale ocean observation and exploration. As an observation platform, the UG needs to carry out path planning and correction continuously in the early stages and during missions in order to better serve the requirements of ocean observation and exploration. First, this paper summarizes the relevant literatures on path planning research methods for UG in recent years. UG path planning algorithms are mainly divided into three categories: traditional algorithms, intelligent optimization algorithms and multi-algorithm fusions. Combined with practical application, the performance of different path planning algorithms is compared. The key technologies of UG path planning, such as environment reconstruction, environment perception, intelligent decision-making and underwater positioning, are then summarized. Finally, the development direction of UG multi-algorithm integration, multi-glider cooperation, multi-dimensional integration of spatiotemporal constraints and high-precision in complex and unsteady environments are prospected.
  • [1]
    邬满, 文莉莉. 国内外海洋经济发展经验与趋势分析[J]. 中国国土资源经济, 2021, 34(10): 60–66. doi: 10.19676/j.cnki.1672-6995.000590

    WU M, WEN L L. Analysis on the development experience and trend of marine economy at home and abroad[J]. Natural Resource Economics of China, 2021, 34(10): 60–66 (in Chinese). doi: 10.19676/j.cnki.1672-6995.000590
    [2]
    方尔正, 周子凌, 桂晨阳. 水下滑翔机原理与应用[J]. 国防科技工业, 2020(8): 66–68.

    FANG E Z, ZHOU Z L, GUI C Y. Principle and application of underwater glider[J]. National Defense Science and Technology Industry, 2020(8): 66–68 (in Chinese).
    [3]
    李沛伦. 水下滑翔机的路径规划研究[D]. 上海: 上海交通大学, 2019.

    LI P L. Research on path planning of underwater glider[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
    [4]
    杜沛, 任利锋, 刘善伟, 等. 基于海洋环境要素的动态航行风险评估[J]. 中国安全生产科学技术, 2021, 17(2): 171–176.

    DU P, REN L F, LIU S W, et al. Dynamic navigation risk assessment based on marine environmental elements[J]. Journal of Safety Science and Technology, 2021, 17(2): 171–176 (in Chinese).
    [5]
    李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[J]. 国外电子测量技术, 2019, 38(6): 72–79.

    LI Y D, MA T L, CHEN C B, et al. Review of path planning algorithm for unmanned vehicles[J]. Foreign Electronic Measurement Technology, 2019, 38(6): 72–79 (in Chinese).
    [6]
    姜凯文. 传统优化算法VS智能优化算法[EB/OL]. (2020-12-20)[2021-06-10]. https://blog.csdn.net/qq_43641765/article/details/111414848.

    JIANG K W. Traditional optimization algorithm and intelligent optimization algorithm[EB/OL]. (2020-12-20)[2021-06-10]. https://blog.csdn.net/qq_43641765/article/details/111414848 (in Chinese).
    [7]
    赵涛, 刘明雍, 周良荣. 自主水下航行器的研究现状与挑战[J]. 火力与指挥控制, 2010, 35(6): 1–6. doi: 10.3969/j.issn.1002-0640.2010.06.001

    ZHAO T, LIU M Y, ZHOU L R. A survey of autonomous underwater vehicle recent advances and future challenges[J]. Fire Control & Command Control, 2010, 35(6): 1–6 (in Chinese). doi: 10.3969/j.issn.1002-0640.2010.06.001
    [8]
    沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89–106.

    SHEN X R, WANG Y H, YANG S Q, et al. Development of underwater gliders: an overview and prospect[J]. Journal of Unmanned Undersea System, 2018, 26(2): 89–106 (in Chinese).
    [9]
    温浩然, 魏纳新, 刘飞. 水下滑翔机的研究现状与面临的挑战[J]. 船舶工程, 2015, 37(1): 1–6.

    WEN H R, WEI N X, LIU F. Research of current situation and future challenges of underwater glider[J]. Ship Engineering, 2015, 37(1): 1–6 (in Chinese).
    [10]
    LI D L, WANG P, DU L. Path planning technologies for autonomous underwater vehicles-a review[J]. IEEE Access, 2018, 7: 9745–9768.
    [11]
    MCCOLGAN J, MCGOOKIN E W, MAZLAN A N A. A low fidelity mathematical model of a biomimetic AUV for multi-vehicle cooperation[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015.
    [12]
    FORNEY C, MANII E, FARRIS M, et al. Tracking of a tagged leopard shark with an AUV: sensor calibration and state estimation[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012: 5315-5321.
    [13]
    陈麒杰, 晋玉强, 韩露. 无人机路径规划算法研究综述[J]. 飞航导弹, 2020(5): 54–58. doi: 10.16338/j.issn.1009-1319.20190335

    CHEN Q J, JIN Y Q, HAN L. Overview of UAV path planning algorithm[J]. Aerodynamic Missile Journal, 2020(5): 54–58 (in Chinese). doi: 10.16338/j.issn.1009-1319.20190335
    [14]
    郭银景, 孟庆良, 孔芳, 等. AUV路径规划算法研究现状与展望[J]. 计算机科学与探索, 2020, 14(12): 1981–1994. doi: 10.3778/j.issn.1673-9418.2003061

    GUO Y J, MENG Q L, KONG F, et al. Research status and prospect of AUV path planning algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 1981–1994 (in Chinese). doi: 10.3778/j.issn.1673-9418.2003061
    [15]
    YANG L, QI J T, XIAO J Z, et al. A literature review of UAV 3D path planning[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014.
    [16]
    HADI B, KHOSRAVI A, SARHADI P. A review of the path planning and formation control for multiple autonomous underwater vehicles[J]. Journal of Intelligent & Robotic Systems, 2021, 101(4): 67.
    [17]
    李全涌, 李波, 张瑞, 等. 基于改进Dijkstra算法的AGV路径规划研究[J]. 机械工程与自动化, 2021(1): 23–25, 28. doi: 10.3969/j.issn.1672-6413.2021.01.008

    LI Q Y, LI B, ZHANG R, et al. Research on AGV path planning based on improved Dijkstra algorithm[J]. Mechanical Engineering & Automation, 2021(1): 23–25, 28 (in Chinese). doi: 10.3969/j.issn.1672-6413.2021.01.008
    [18]
    EICHHORN M. A new concept for an obstacle avoidance system for the AUV ''SLOCUM Glider'' operation under ice[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009: 1-8.
    [19]
    FERNÁNDEZ-PERDOMO E, CABRERA-GÁMEZ J, HERNÁNDEZ-SOSA D, et al. Adaptive bearing sampl-ing for a constant-time surfacing A* path planning algorithm for gliders[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011.
    [20]
    FERNÁNDEZ-PERDOMO E, CABRERA-GÁMEZ J, HERNÁNDEZ-SOSA D, et al. Path planning for gliders using regional ocean models: application of Pinzón path planner with the ESEOAT model and the RU27 transatlantic flight data[C]//Oceans'10 IEEE Sydney. Sydney, NSW, Australia: IEEE, 2012: 1-8.
    [21]
    WANG X C, CHAO Y, THOMPSON D R, et al. Multi-model ensemble forecasting and glider path planning in the mid-atlantic bight[J]. Continental Shelf Research, 2013, 63(Supp 1): S223-S234.
    [22]
    EICHHORN M. Optimal routing strategies for autonomous underwater vehicles in time-varying environment[J]. Robotics and Autonomous Systems, 2015, 67: 33–43. doi: 10.1016/j.robot.2013.08.010
    [23]
    ISERN-GONZÁLEZ J, HERNÁNDEZ-SOSA D, FERNÁNDEZ-PERDOMO E, et al. Application of optimization algorithms to trajectory planning for underwater gliders[M]//MORENO-DÍAZ R, PICHLER F, QUESADA-ARENCIBIA A. Computer Aided Systems Theory – EUROCAST 2011. Eurocast: Springer, 2012: 433-440.
    [24]
    周耀鉴, 刘世杰, 俞建成, 等. 基于局部流场构建的水下滑翔机路径规划[J]. 机器人, 2018, 40(1): 1–7.

    ZHOU Y J, LIU S J, YU J C, et al. Underwater glider path planning based on local flow field construction[J]. Robot, 2018, 40(1): 1–7 (in Chinese).
    [25]
    HE B, ZHOU X. Path planning and tracking for AUV in large-scale environment[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Wuhan, China: IEEE, 2010.
    [26]
    YOO C, ANSTEE S, FITCH R. Stochastic path planning for autonomous underwater gliders with safety constraints[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019.
    [27]
    TOMASZEWSKI C, VALADA A, SCERRI P. Planning efficient paths through dynamic flow fields in real world domains[C]//2013 Oceans-San Diego. San Diego, CA, USA: IEEE, 2012.
    [28]
    LOLLA T, HALEY JR P J, LERMUSIAUX P F J. Time-optimal path planning in dynamic flows using level set equations: realistic applications[J]. Ocean Dynamics, 2014, 64(10): 1399–1417. doi: 10.1007/s10236-014-0760-3
    [29]
    LOLLA T, HALEY P J, LERMUSIAUX P F J. Path planning in multi-scale ocean flows: coordination and dynamic obstacles[J]. Ocean Modelling, 2015, 94: 46–66. doi: 10.1016/j.ocemod.2015.07.013
    [30]
    KABIT O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics and Research, 1986, 5(1): 90–98. doi: 10.1177/027836498600500106
    [31]
    李沛伦, 杨启. 基于改进人工势场法的水下滑翔机路径规划[J]. 舰船科学技术, 2019, 41(4): 89–93. doi: 10.3404/j.issn.1672-7649.2019.04.017

    YANG P L, YANG Q. Path planning for underwater glider based on improved artificial potential field method[J]. Ship Science and Technology, 2019, 41(4): 89–93 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.04.017
    [32]
    LAVALLE S M, KUFFNER JR J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378–400. doi: 10.1177/02783640122067453
    [33]
    HERNÁNDEZ J D, VIDAL E, VALLICROSA G, et al. Online path planning for autonomous underwater vehicles in unknown environments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 1152-1157.
    [34]
    陈香敏, 吴莹. 基于Voronoi图的UAV攻击多移动目标的路径规划算法研究[J]. 信息通信, 2020(6): 36–37.

    CHEN X M, WU Y. Research on path planning algorithm of UAV attacking multiple moving targets based on Voronoi diagram[J]. Information & Communications, 2020(6): 36–37 (in Chinese).
    [35]
    MARINO A, ANTONELLI G. Experiments on sampling/patrolling with two autonomous underwater vehicles[J]. Robotics and Autonomous Systems, 2015, 67: 61–71. doi: 10.1016/j.robot.2014.09.030
    [36]
    CANDELORO M, LEKKAS A M, HEGDE J, et al. A 3D dynamic Voronoi diagram-based path-planning system for UUVs[C]//Oceans 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016.
    [37]
    INANC T, SHADDEN S C, MARSDEN J E. Optimal trajectory generation in ocean flows[C]//Proceedings of the 2005, American Control Conference. Portland, OR, USA: IEEE, 2005.
    [38]
    ZHANG W Z, INANC T, OBER-BLOBAUM S, et al. Optimal trajectory generation for a glider in time-varying 2D ocean flows B-spline model[C]//2008 International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008.
    [39]
    RAMOS A G, GARCÍA-GARRIDO V J, MANCHO A M, et al. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions[J]. Science Reports, 2017, 8(1): 4575.
    [40]
    DAVIS R E, LEONARD N E, FRATANTONI D M. Routing strategies for underwater gliders[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(3/4/5): 173–187.
    [41]
    KULKARNI C S, LERMUSIAUX P F J. Three-dimensional time-optimal path planning in the ocean[J]. Ocean Modelling, 2020, 152: 101644. doi: 10.1016/j.ocemod.2020.101644
    [42]
    HERNANDEZ D, ADLER L, ISERN J, et al. Data uncertainty management in path planning for underwater ocean gliders[C]//Oceans 2014-Taipei. Taipei, China: IEEE, 2012.
    [43]
    STUNTZ A, LIEBEL D, SMITH R N. Enabling persistent autonomy for underwater gliders through terrain based navigation[C]//Oceans 2015-Genova. Genova, Italy: IEEE, 2013.
    [44]
    CADMUS TO K Y, LEE J J H, YOO C, et al. Streamline-based control of underwater gliders in 3D environments[C]//2019 IEEE 58th Conference on Decision and Control (CDC). Nice, France: IEEE, 2019.
    [45]
    何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报, 2021, 54(4): 388–396.

    HE B Y, DU J H, YANG S Q, et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University, 2021, 54(4): 388–396 (in Chinese).
    [46]
    MAHMOUDIAN N, GEISBERT J, WOOLSEY C. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning[J]. IEEE Journal of Oceanic Engineering, 2010, 35(1): 131–143. doi: 10.1109/JOE.2009.2039655
    [47]
    WEHBE B, SHAMMAS E, ZEAITER J, et al. Dynamic modeling and path planning of a hybrid autonomous underwater vehicle[C]//2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia: IEEE, 2014.
    [48]
    LIU Y J, MA J, MA N, et al. Path planning for underwater glider under control constraint[J]. Advances in Mechanical Engineering, 2017, 9(8): 1–9.
    [49]
    BINNEY J, KRAUSE A, SUKHATME G S. Informative path planning for an autonomous underwater vehicle[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage AK, USA: IEEE, 2010.
    [50]
    ISERN-GONZÁLEZ J, HERNÁNDEZ-SOSA D, FERNÁNDEZ-PERDOMO E, et al. Path planning for underwater gliders using iterative optimization[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011.
    [51]
    FERNÁNDEZ-PERDOMO E, HERNÁNDEZ-SOSA D, ISERN-GONZÁLEZ J, et al. Single and multiple glider path planning using an optimization-based approach[C]//Oceans 2011 IEEE. Santander, Spain: IEEE, 2011.
    [52]
    HUANG Y, YU J C, ZHAO W T, et al. A practical path tracking method for autonomous underwater gilders using iterative algorithm[C]//Oceans 2015 - MTS/IEEE Washington. Washington, DC, USA: IEEE, 2015.
    [53]
    SOFGE D A, WHITMAN J S. Long-range near-optimal path planning for gliders in complex high-energy environments[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2020.
    [54]
    SMITH R N, KELLY J, SUKHATME G S. Towards improving mission execution for autonomous gliders with an ocean model and Kalman filter[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012.
    [55]
    PEREIRA A A, BINNEY J, HOLLINGER G A, et al. Risk-aware path planning for autonomous underwater vehicles using predictive ocean models[J]. Journal of Field Robotics, 2013, 30(5): 741–762. doi: 10.1002/rob.21472
    [56]
    HOU M X, LIU S J, ZHANG F M, et al. A combined path planning and path following method for underwater glider navigation in a strong, dynamic flow field[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018.
    [57]
    CAROF A H. Acoustic differential delay and doppler tracking system for long range AUV positioning and guidance[C]//IEEE Symposium on Autonomous Underwater Vehicle Technology. Cambridge, MA, USA: IEEE, 1994.
    [58]
    YANG C J, PENG S L, FAN S S, et al. Study on docking guidance algorithm for hybrid underwater glider in currents[J]. Ocean Engineering, 2016, 125: 170–181. doi: 10.1016/j.oceaneng.2016.08.002
    [59]
    朱心科, 俞建成, 王晓辉. 能耗最优的水下滑翔机采样路径规划[J]. 机器人, 2011, 33(3): 360–365. doi: 10.3724/SP.J.1218.2011.00360

    ZHU X K, YU J C, WANG X H. Sampling path planning of underwater glider for optimal energy consumption[J]. Robot, 2011, 33(3): 360–365 (in Chinese). doi: 10.3724/SP.J.1218.2011.00360
    [60]
    朱心科, 俞建成, 王晓辉. 多水下滑翔机海洋采样路径规划[J]. 信息与控制, 2012, 41(4): 433–438.

    ZHU X K, YU J C, WANG X H. Path planning of multiple underwater gliders for ocean sampling[J]. Information and Control, 2012, 41(4): 433–438 (in Chinese).
    [61]
    THOMPSON D R, CHIEN S, CHAO Y, et al. Spatiotemporal path planning in strong, dynamic, uncertain currents[C]//2010 IEEE International Conference on Robotics & Automation. Anchorage, AK, USA: IEEE, 2010.
    [62]
    ZHANG F T, EN-NASR O, LITCHMAN E, et al. Autonomous sampling of water columns using gliding robotic fish: control algorithms and field experiments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 517-522.
    [63]
    于茂升, 韩雷, 宋大雷. 水下滑翔机路径显示与规划系统的设计与实现[J]. 电子设计工程, 2016, 24(7): 4–7, 10. doi: 10.3969/j.issn.1674-6236.2016.07.002

    YU M S, HAN L, SONG D L. Design and implementation of path display and planning system for underwater glider[J]. Electronic Design Engineering, 2016, 24(7): 4–7, 10 (in Chinese). doi: 10.3969/j.issn.1674-6236.2016.07.002
    [64]
    李少波, 宋启松, 李志昂, 等. 遗传算法在机器人路径规划中的研究综述[J]. 科学技术与工程, 2020, 20(2): 423–431. doi: 10.3969/j.issn.1671-1815.2020.02.001

    LI S B, SONG Q S, LI Z A, et al. Review of genetic algorithm in robot path planning[J]. Science Technology and Engineering, 2020, 20(2): 423–431 (in Chinese). doi: 10.3969/j.issn.1671-1815.2020.02.001
    [65]
    CHENG C T, FALLAHI K, LEUNG H, et al. A genetic algorithm-inspired UUV path planner based on dynamic programming[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1128–1134. doi: 10.1109/TSMCC.2011.2180526
    [66]
    CAO J L, CAO J J, ZENG Z, et al. Optimal path planning of underwater glider in 3D Dubins motion with minimal energy consumption[C]//Oceans 2016-Shanghai. Shanghai, China: IEEE, 2015.
    [67]
    LUCAS C, HERNADEZ-SOSA D, CALDEIRA R. Multi-objective four-dimensional glider path planning using NSGA-II[C]//2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). Porto, Portugal: IEEE, 2016.
    [68]
    LUCAS C, HERNÁNDEZ-SOSA D, GREINER D, et al. An approach to multi-objective path planning optimization for underwater gliders[J]. Sensors, 2019, 19(24): 5506. doi: 10.3390/s19245506
    [69]
    CAO J L, CAO J J, ZENG Z, et al. Toward optimal rendezvous of multiple underwater gliders: 3D path planning with combined sawtooth and spiral motion[J]. Journal of Intelligent & Robotic Systems, 2017, 85(1): 189–206.
    [70]
    SHIH C C, HORNG M F, PAN T S, et al. A genetic-based effective approach to path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans[J]. Soft Computing, 2017, 21(18): 5369–5386. doi: 10.1007/s00500-016-2122-1
    [71]
    SHIH C C, HORNG M F, PAN T S. A parallel genetic approach to path-planning with upstream-current avoidance for multi-AUG deployment[J]. Soft Computing, 2020, 24(11): 8427–8441. doi: 10.1007/s00500-019-04409-1
    [72]
    STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328
    [73]
    ZAMUDA A, SOSA J D H, ADLER L. Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling[J]. Applied Soft Computing, 2016, 42: 93–118. doi: 10.1016/j.asoc.2016.01.038
    [74]
    ZAMUDA A, SOSA J D H. Success history applied to expert system for underwater glider path planning using differential evolution[J]. Expert Systems with Applications, 2019, 119: 155–170. doi: 10.1016/j.eswa.2018.10.048
    [75]
    ZADEH S M, YAZDANI A M, SAMMUT K, et al. Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms[J]. Applied Soft Computing, 2018, 70: 929–945. doi: 10.1016/j.asoc.2017.10.025
    [76]
    ZANG W C, NIE Y L, SONG D L, et al. Research on constraining strategies of underwater glider's trajectory under the influence of ocean currents based on DQN algorithm[C]//Oceans 2019 MTS/IEEE Seattle. Seattle, WA, USA: IEEE, 2014.
    [77]
    NI J J, WU L Y, WANG S H, et al. 3D real-time path planning for AUV based on improved bio-inspired neural network[C]//2016 IEEE International Conference on Consumer Electronics. Nantou, China: IEEE, 2016.
    [78]
    SU Y S, ZHANG L, LI Y, et al. A glider-assist routing protocol for underwater acoustic networks with trajectory prediction methods[J]. IEEE Access, 2020, 8: 154560–154572. doi: 10.1109/ACCESS.2020.3015856
    [79]
    DORIGO M. The ant system: an autocatalytic optimizing process[C]//First European Conference on Artificial Life, 1991.
    [80]
    XIONG C K, ZENG Z, LIAN L. Path planning of multi-modal underwater vehicle for adaptive sampling using delaunay spatial partition-ant colony optimization[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018, 522-537.
    [81]
    HAN G J, ZHOU Z R, ZHANG T W, et al. Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8959–8971. doi: 10.1109/TVT.2020.2998137
    [82]
    LI J, WANG H X. Research on AUV path planning based on improved ant colony algorithm[C]//2020 IEEE International Conference on Mechatronics and Automation. Beijing, China: IEEE, 2020.
    [83]
    江霓. 智能路径优化方法综述[J]. 信息技术, 2016(4): 187–189. doi: 10.13274/j.cnki.hdzj.2016.04.045

    JIANG N. The summarizing for intelligent path optimization method[J]. Information Technology, 2016(4): 187–189 (in Chinese). doi: 10.13274/j.cnki.hdzj.2016.04.045
    [84]
    赵宝强. 基于粒子群改进算法的水下滑翔机路径优化[J]. 舰船科学技术, 2015, 37(8): 140–145. doi: 10.3404/j.issn.1672-7649.2015.08.029

    ZHAO B Q. Underwater glider path optimization based on improved particle swarm algorithm[J]. Ship Science and Technology, 2015, 37(8): 140–145 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.08.029
    [85]
    于文举, 丁军航, 官晟, 等. 考虑障碍物避让的水下滑翔机局部路径规划方法[J]. 传感器与微系统, 2020, 39(9): 60–62, 65. doi: 10.13873/J.1000-9787(2020)09-0060-03

    YU W J, DING J H, GUAN S, et al. Local path planning method of underwater glider considering obstacle avoidance[J]. Transducer and Microsystem Technologies, 2020, 39(9): 60–62, 65 (in Chinese). doi: 10.13873/J.1000-9787(2020)09-0060-03
    [86]
    KARABOGA D. An idea based on honey bee swarm for numerical optimization, TR06[R]. Kayseri, Turkey: Erciyes University, 2005.
    [87]
    宋大雷, 臧文川, 郭亭亭, 等. 水下滑翔机长航程全局路径规划[J]. 控制工程, 2020, 27(10): 1679–1685. doi: 10.14107/j.cnki.kzgc.20180145

    SONG D L, ZANG W C, GUO T T, et al. Global path planning for long range voyage of underwater gliders[J]. Control Engineering of China, 2020, 27(10): 1679–1685 (in Chinese). doi: 10.14107/j.cnki.kzgc.20180145
    [88]
    ZHU X K, JIN X L, YU J C, et al. Path planning in stronger ocean current for underwater glider[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China: IEEE, 2015.
    [89]
    ZHANG H H, GONG L M, CHEN T, et al. Global path planning methods of UUV in coastal environment[C]//2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016.
    [90]
    LI J H, KANG H, PARK G H, et al. Real time path planning of underwater robots in unknown environment[C]//2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). Prague, Czech Republic: IEEE, 2017.
    [91]
    ZHANG G L, JIA H M. Global path planning of AUV based on improved ant colony optimization algorithm[C]//2012 IEEE International Conference on Automation and Logistics. Zhengzhou, China: IEEE, 2012.
    [92]
    ZHANG G L, JIA H M. 3D path planning of AUV based on improved ant colony optimization[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013.
    [93]
    唐旭东, 庞永杰, 李晔, 等. 基于蚁群优化的水下机器人FNN控制方法[C]//第27届中国控制会议论文集. 昆明: 中国自动化学会, 2008.

    TANG X D, PANG Y J, LI Y, et al. FNN control method of underwater vehicle based on ant colony optimization[C]//Proceedings of the 27th China Control Conference. Kunming: Chinese Association of Automation, 2008 (in Chinese).
    [94]
    ZHOU H X, ZENG Z, LIAN L. Adaptive re-planning of AUVs for environmental sampling missions: a fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2018, 20(2): 650–671. doi: 10.1007/s40815-017-0398-7
    [95]
    秦洪德, 孙延超. AUV关键技术与发展趋势[J]. 舰船科学技术, 2020, 42(12): 25–28. doi: 10.3404/j.issn.1672-7649.2020.12.005

    QIN H D, SUN Y C. Analysis of the status and development of foreign AUV[J]. Ship Science and Technology, 2020, 42(12): 25–28 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.12.005
    [96]
    刘志伟. 多元测距AUV环境感知与自主规避方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    LIU Z W. Research on environment perception and autonomous collision avoidance of the AUV based on multi-sonar array[D]. Harbin: Harbin Engineering University, 2011 (in Chinese).
    [97]
    高照东. 智能决策技术原理及应用[J]. 商情(教育经济研究), 2008(2): 19–20.

    GAO Z D. Principle and application of intelligent decision technology[J]. Business Information (Research on Educational Economy), 2008(2): 19–20 (in Chinese).
    [98]
    吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31.

    WU Y S, ZHAO Y Y, LANG S Y, et al. Development of autonomous underwater vehicles technology[J]. Strategic Study of CAE, 2020, 22(6): 26–31 (in Chinese).
    [99]
    孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1–11. doi: 10.11990/jheu.201712014

    SUN Y Y, WU H W, LI Y, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1–11 (in Chinese). doi: 10.11990/jheu.201712014
    [100]
    刘子琪, 兰世泉, 杨绍琼, 等. 基于水下滑翔机平台的海洋声学探测技术发展现状与展望[J]. 数字海洋与水下攻防, 2021, 4(1): 8–14. doi: 10.19838/j.issn.2096-5753.2021.01.002

    LIU Z Q, LAN S Q, YANG S Q, et al. Development status and prospect of ocean acoustic detection technology based on underwater glider platform[J]. Digital Ocean & Underwater Warfare, 2021, 4(1): 8–14 (in Chinese). doi: 10.19838/j.issn.2096-5753.2021.01.002
  • Cited by

    Periodical cited type(6)

    1. 朱猛,刘健,李国庆,冯战豪,余祖耀. 仿生外形多对翼水下滑翔机水动力性能研究. 舰船科学技术. 2025(08): 100-106 .
    2. 万程龙,周焕银,刘凯伦,龚利文,周剑照,刘国权. 基于自适应分段步长RRT-APF的水下机器人三维路径规划算法. 机床与液压. 2025(09): 31-37 .
    3. 刘健,周广礼,彭嘉澍,朱猛,李国庆,余祖耀. 双壳体混合驱动水下滑翔机结构原理及水动力性能研究. 水下无人系统学报. 2024(01): 25-31 .
    4. 叶丽杰,成尔卓,徐灵瑞. 文献计量可视化分析“水下机器人”领域现状、热点与趋势. 物联网技术. 2024(03): 81-85 .
    5. 汤亚玲,刘恩赐,张学锋,胡伟鹏. 基于改进的A~*算法的移动机器人路径规划. 安徽大学学报(自然科学版). 2024(05): 18-25 .
    6. 包艺,张庆辉,刘勇锋,李广华,张淼,陈效鹏,杜鹏. 水下仿生流场探测技术研究进展. 数字海洋与水下攻防. 2023(04): 458-471 .

    Other cited types(12)

Catalog

    Article views (3087) PDF downloads (306) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return