Citation: | SHI Q Q, NIU W D, ZHANG R F, et al. Review and prospects of underwater glider path planning[J]. Chinese Journal of Ship Research, 2023, 18(1): 29–42, 51. DOI: 10.19693/j.issn.1673-3185.02435 |
[1] |
邬满, 文莉莉. 国内外海洋经济发展经验与趋势分析[J]. 中国国土资源经济, 2021, 34(10): 60–66. doi: 10.19676/j.cnki.1672-6995.000590
WU M, WEN L L. Analysis on the development experience and trend of marine economy at home and abroad[J]. Natural Resource Economics of China, 2021, 34(10): 60–66 (in Chinese). doi: 10.19676/j.cnki.1672-6995.000590
|
[2] |
方尔正, 周子凌, 桂晨阳. 水下滑翔机原理与应用[J]. 国防科技工业, 2020(8): 66–68.
FANG E Z, ZHOU Z L, GUI C Y. Principle and application of underwater glider[J]. National Defense Science and Technology Industry, 2020(8): 66–68 (in Chinese).
|
[3] |
李沛伦. 水下滑翔机的路径规划研究[D]. 上海: 上海交通大学, 2019.
LI P L. Research on path planning of underwater glider[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
|
[4] |
杜沛, 任利锋, 刘善伟, 等. 基于海洋环境要素的动态航行风险评估[J]. 中国安全生产科学技术, 2021, 17(2): 171–176.
DU P, REN L F, LIU S W, et al. Dynamic navigation risk assessment based on marine environmental elements[J]. Journal of Safety Science and Technology, 2021, 17(2): 171–176 (in Chinese).
|
[5] |
李永丹, 马天力, 陈超波, 等. 无人驾驶车辆路径规划算法综述[J]. 国外电子测量技术, 2019, 38(6): 72–79.
LI Y D, MA T L, CHEN C B, et al. Review of path planning algorithm for unmanned vehicles[J]. Foreign Electronic Measurement Technology, 2019, 38(6): 72–79 (in Chinese).
|
[6] |
姜凯文. 传统优化算法VS智能优化算法[EB/OL]. (2020-12-20)[2021-06-10]. https://blog.csdn.net/qq_43641765/article/details/111414848.
JIANG K W. Traditional optimization algorithm and intelligent optimization algorithm[EB/OL]. (2020-12-20)[2021-06-10]. https://blog.csdn.net/qq_43641765/article/details/111414848 (in Chinese).
|
[7] |
赵涛, 刘明雍, 周良荣. 自主水下航行器的研究现状与挑战[J]. 火力与指挥控制, 2010, 35(6): 1–6. doi: 10.3969/j.issn.1002-0640.2010.06.001
ZHAO T, LIU M Y, ZHOU L R. A survey of autonomous underwater vehicle recent advances and future challenges[J]. Fire Control & Command Control, 2010, 35(6): 1–6 (in Chinese). doi: 10.3969/j.issn.1002-0640.2010.06.001
|
[8] |
沈新蕊, 王延辉, 杨绍琼, 等. 水下滑翔机技术发展现状与展望[J]. 水下无人系统学报, 2018, 26(2): 89–106.
SHEN X R, WANG Y H, YANG S Q, et al. Development of underwater gliders: an overview and prospect[J]. Journal of Unmanned Undersea System, 2018, 26(2): 89–106 (in Chinese).
|
[9] |
温浩然, 魏纳新, 刘飞. 水下滑翔机的研究现状与面临的挑战[J]. 船舶工程, 2015, 37(1): 1–6.
WEN H R, WEI N X, LIU F. Research of current situation and future challenges of underwater glider[J]. Ship Engineering, 2015, 37(1): 1–6 (in Chinese).
|
[10] |
LI D L, WANG P, DU L. Path planning technologies for autonomous underwater vehicles-a review[J]. IEEE Access, 2018, 7: 9745–9768.
|
[11] |
MCCOLGAN J, MCGOOKIN E W, MAZLAN A N A. A low fidelity mathematical model of a biomimetic AUV for multi-vehicle cooperation[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015.
|
[12] |
FORNEY C, MANII E, FARRIS M, et al. Tracking of a tagged leopard shark with an AUV: sensor calibration and state estimation[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012: 5315-5321.
|
[13] |
陈麒杰, 晋玉强, 韩露. 无人机路径规划算法研究综述[J]. 飞航导弹, 2020(5): 54–58. doi: 10.16338/j.issn.1009-1319.20190335
CHEN Q J, JIN Y Q, HAN L. Overview of UAV path planning algorithm[J]. Aerodynamic Missile Journal, 2020(5): 54–58 (in Chinese). doi: 10.16338/j.issn.1009-1319.20190335
|
[14] |
郭银景, 孟庆良, 孔芳, 等. AUV路径规划算法研究现状与展望[J]. 计算机科学与探索, 2020, 14(12): 1981–1994. doi: 10.3778/j.issn.1673-9418.2003061
GUO Y J, MENG Q L, KONG F, et al. Research status and prospect of AUV path planning algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 1981–1994 (in Chinese). doi: 10.3778/j.issn.1673-9418.2003061
|
[15] |
YANG L, QI J T, XIAO J Z, et al. A literature review of UAV 3D path planning[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: IEEE, 2014.
|
[16] |
HADI B, KHOSRAVI A, SARHADI P. A review of the path planning and formation control for multiple autonomous underwater vehicles[J]. Journal of Intelligent & Robotic Systems, 2021, 101(4): 67.
|
[17] |
李全涌, 李波, 张瑞, 等. 基于改进Dijkstra算法的AGV路径规划研究[J]. 机械工程与自动化, 2021(1): 23–25, 28. doi: 10.3969/j.issn.1672-6413.2021.01.008
LI Q Y, LI B, ZHANG R, et al. Research on AGV path planning based on improved Dijkstra algorithm[J]. Mechanical Engineering & Automation, 2021(1): 23–25, 28 (in Chinese). doi: 10.3969/j.issn.1672-6413.2021.01.008
|
[18] |
EICHHORN M. A new concept for an obstacle avoidance system for the AUV ''SLOCUM Glider'' operation under ice[C]//Oceans 2009-Europe. Bremen, Germany: IEEE, 2009: 1-8.
|
[19] |
FERNÁNDEZ-PERDOMO E, CABRERA-GÁMEZ J, HERNÁNDEZ-SOSA D, et al. Adaptive bearing sampl-ing for a constant-time surfacing A* path planning algorithm for gliders[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011.
|
[20] |
FERNÁNDEZ-PERDOMO E, CABRERA-GÁMEZ J, HERNÁNDEZ-SOSA D, et al. Path planning for gliders using regional ocean models: application of Pinzón path planner with the ESEOAT model and the RU27 transatlantic flight data[C]//Oceans'10 IEEE Sydney. Sydney, NSW, Australia: IEEE, 2012: 1-8.
|
[21] |
WANG X C, CHAO Y, THOMPSON D R, et al. Multi-model ensemble forecasting and glider path planning in the mid-atlantic bight[J]. Continental Shelf Research, 2013, 63(Supp 1): S223-S234.
|
[22] |
EICHHORN M. Optimal routing strategies for autonomous underwater vehicles in time-varying environment[J]. Robotics and Autonomous Systems, 2015, 67: 33–43. doi: 10.1016/j.robot.2013.08.010
|
[23] |
ISERN-GONZÁLEZ J, HERNÁNDEZ-SOSA D, FERNÁNDEZ-PERDOMO E, et al. Application of optimization algorithms to trajectory planning for underwater gliders[M]//MORENO-DÍAZ R, PICHLER F, QUESADA-ARENCIBIA A. Computer Aided Systems Theory – EUROCAST 2011. Eurocast: Springer, 2012: 433-440.
|
[24] |
周耀鉴, 刘世杰, 俞建成, 等. 基于局部流场构建的水下滑翔机路径规划[J]. 机器人, 2018, 40(1): 1–7.
ZHOU Y J, LIU S J, YU J C, et al. Underwater glider path planning based on local flow field construction[J]. Robot, 2018, 40(1): 1–7 (in Chinese).
|
[25] |
HE B, ZHOU X. Path planning and tracking for AUV in large-scale environment[C]//2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Wuhan, China: IEEE, 2010.
|
[26] |
YOO C, ANSTEE S, FITCH R. Stochastic path planning for autonomous underwater gliders with safety constraints[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Macau, China: IEEE, 2019.
|
[27] |
TOMASZEWSKI C, VALADA A, SCERRI P. Planning efficient paths through dynamic flow fields in real world domains[C]//2013 Oceans-San Diego. San Diego, CA, USA: IEEE, 2012.
|
[28] |
LOLLA T, HALEY JR P J, LERMUSIAUX P F J. Time-optimal path planning in dynamic flows using level set equations: realistic applications[J]. Ocean Dynamics, 2014, 64(10): 1399–1417. doi: 10.1007/s10236-014-0760-3
|
[29] |
LOLLA T, HALEY P J, LERMUSIAUX P F J. Path planning in multi-scale ocean flows: coordination and dynamic obstacles[J]. Ocean Modelling, 2015, 94: 46–66. doi: 10.1016/j.ocemod.2015.07.013
|
[30] |
KABIT O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics and Research, 1986, 5(1): 90–98. doi: 10.1177/027836498600500106
|
[31] |
李沛伦, 杨启. 基于改进人工势场法的水下滑翔机路径规划[J]. 舰船科学技术, 2019, 41(4): 89–93. doi: 10.3404/j.issn.1672-7649.2019.04.017
YANG P L, YANG Q. Path planning for underwater glider based on improved artificial potential field method[J]. Ship Science and Technology, 2019, 41(4): 89–93 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.04.017
|
[32] |
LAVALLE S M, KUFFNER JR J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378–400. doi: 10.1177/02783640122067453
|
[33] |
HERNÁNDEZ J D, VIDAL E, VALLICROSA G, et al. Online path planning for autonomous underwater vehicles in unknown environments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 1152-1157.
|
[34] |
陈香敏, 吴莹. 基于Voronoi图的UAV攻击多移动目标的路径规划算法研究[J]. 信息通信, 2020(6): 36–37.
CHEN X M, WU Y. Research on path planning algorithm of UAV attacking multiple moving targets based on Voronoi diagram[J]. Information & Communications, 2020(6): 36–37 (in Chinese).
|
[35] |
MARINO A, ANTONELLI G. Experiments on sampling/patrolling with two autonomous underwater vehicles[J]. Robotics and Autonomous Systems, 2015, 67: 61–71. doi: 10.1016/j.robot.2014.09.030
|
[36] |
CANDELORO M, LEKKAS A M, HEGDE J, et al. A 3D dynamic Voronoi diagram-based path-planning system for UUVs[C]//Oceans 2016 MTS/IEEE Monterey. Monterey, CA, USA: IEEE, 2016.
|
[37] |
INANC T, SHADDEN S C, MARSDEN J E. Optimal trajectory generation in ocean flows[C]//Proceedings of the 2005, American Control Conference. Portland, OR, USA: IEEE, 2005.
|
[38] |
ZHANG W Z, INANC T, OBER-BLOBAUM S, et al. Optimal trajectory generation for a glider in time-varying 2D ocean flows B-spline model[C]//2008 International Conference on Robotics and Automation. Pasadena, CA, USA: IEEE, 2008.
|
[39] |
RAMOS A G, GARCÍA-GARRIDO V J, MANCHO A M, et al. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions[J]. Science Reports, 2017, 8(1): 4575.
|
[40] |
DAVIS R E, LEONARD N E, FRATANTONI D M. Routing strategies for underwater gliders[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(3/4/5): 173–187.
|
[41] |
KULKARNI C S, LERMUSIAUX P F J. Three-dimensional time-optimal path planning in the ocean[J]. Ocean Modelling, 2020, 152: 101644. doi: 10.1016/j.ocemod.2020.101644
|
[42] |
HERNANDEZ D, ADLER L, ISERN J, et al. Data uncertainty management in path planning for underwater ocean gliders[C]//Oceans 2014-Taipei. Taipei, China: IEEE, 2012.
|
[43] |
STUNTZ A, LIEBEL D, SMITH R N. Enabling persistent autonomy for underwater gliders through terrain based navigation[C]//Oceans 2015-Genova. Genova, Italy: IEEE, 2013.
|
[44] |
CADMUS TO K Y, LEE J J H, YOO C, et al. Streamline-based control of underwater gliders in 3D environments[C]//2019 IEEE 58th Conference on Decision and Control (CDC). Nice, France: IEEE, 2019.
|
[45] |
何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报, 2021, 54(4): 388–396.
HE B Y, DU J H, YANG S Q, et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University, 2021, 54(4): 388–396 (in Chinese).
|
[46] |
MAHMOUDIAN N, GEISBERT J, WOOLSEY C. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning[J]. IEEE Journal of Oceanic Engineering, 2010, 35(1): 131–143. doi: 10.1109/JOE.2009.2039655
|
[47] |
WEHBE B, SHAMMAS E, ZEAITER J, et al. Dynamic modeling and path planning of a hybrid autonomous underwater vehicle[C]//2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia: IEEE, 2014.
|
[48] |
LIU Y J, MA J, MA N, et al. Path planning for underwater glider under control constraint[J]. Advances in Mechanical Engineering, 2017, 9(8): 1–9.
|
[49] |
BINNEY J, KRAUSE A, SUKHATME G S. Informative path planning for an autonomous underwater vehicle[C]//2010 IEEE International Conference on Robotics and Automation. Anchorage AK, USA: IEEE, 2010.
|
[50] |
ISERN-GONZÁLEZ J, HERNÁNDEZ-SOSA D, FERNÁNDEZ-PERDOMO E, et al. Path planning for underwater gliders using iterative optimization[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011.
|
[51] |
FERNÁNDEZ-PERDOMO E, HERNÁNDEZ-SOSA D, ISERN-GONZÁLEZ J, et al. Single and multiple glider path planning using an optimization-based approach[C]//Oceans 2011 IEEE. Santander, Spain: IEEE, 2011.
|
[52] |
HUANG Y, YU J C, ZHAO W T, et al. A practical path tracking method for autonomous underwater gilders using iterative algorithm[C]//Oceans 2015 - MTS/IEEE Washington. Washington, DC, USA: IEEE, 2015.
|
[53] |
SOFGE D A, WHITMAN J S. Long-range near-optimal path planning for gliders in complex high-energy environments[C]//2010 IEEE/OES Autonomous Underwater Vehicles. Monterey, CA, USA: IEEE, 2020.
|
[54] |
SMITH R N, KELLY J, SUKHATME G S. Towards improving mission execution for autonomous gliders with an ocean model and Kalman filter[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012.
|
[55] |
PEREIRA A A, BINNEY J, HOLLINGER G A, et al. Risk-aware path planning for autonomous underwater vehicles using predictive ocean models[J]. Journal of Field Robotics, 2013, 30(5): 741–762. doi: 10.1002/rob.21472
|
[56] |
HOU M X, LIU S J, ZHANG F M, et al. A combined path planning and path following method for underwater glider navigation in a strong, dynamic flow field[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018.
|
[57] |
CAROF A H. Acoustic differential delay and doppler tracking system for long range AUV positioning and guidance[C]//IEEE Symposium on Autonomous Underwater Vehicle Technology. Cambridge, MA, USA: IEEE, 1994.
|
[58] |
YANG C J, PENG S L, FAN S S, et al. Study on docking guidance algorithm for hybrid underwater glider in currents[J]. Ocean Engineering, 2016, 125: 170–181. doi: 10.1016/j.oceaneng.2016.08.002
|
[59] |
朱心科, 俞建成, 王晓辉. 能耗最优的水下滑翔机采样路径规划[J]. 机器人, 2011, 33(3): 360–365. doi: 10.3724/SP.J.1218.2011.00360
ZHU X K, YU J C, WANG X H. Sampling path planning of underwater glider for optimal energy consumption[J]. Robot, 2011, 33(3): 360–365 (in Chinese). doi: 10.3724/SP.J.1218.2011.00360
|
[60] |
朱心科, 俞建成, 王晓辉. 多水下滑翔机海洋采样路径规划[J]. 信息与控制, 2012, 41(4): 433–438.
ZHU X K, YU J C, WANG X H. Path planning of multiple underwater gliders for ocean sampling[J]. Information and Control, 2012, 41(4): 433–438 (in Chinese).
|
[61] |
THOMPSON D R, CHIEN S, CHAO Y, et al. Spatiotemporal path planning in strong, dynamic, uncertain currents[C]//2010 IEEE International Conference on Robotics & Automation. Anchorage, AK, USA: IEEE, 2010.
|
[62] |
ZHANG F T, EN-NASR O, LITCHMAN E, et al. Autonomous sampling of water columns using gliding robotic fish: control algorithms and field experiments[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA, USA: IEEE, 2015: 517-522.
|
[63] |
于茂升, 韩雷, 宋大雷. 水下滑翔机路径显示与规划系统的设计与实现[J]. 电子设计工程, 2016, 24(7): 4–7, 10. doi: 10.3969/j.issn.1674-6236.2016.07.002
YU M S, HAN L, SONG D L. Design and implementation of path display and planning system for underwater glider[J]. Electronic Design Engineering, 2016, 24(7): 4–7, 10 (in Chinese). doi: 10.3969/j.issn.1674-6236.2016.07.002
|
[64] |
李少波, 宋启松, 李志昂, 等. 遗传算法在机器人路径规划中的研究综述[J]. 科学技术与工程, 2020, 20(2): 423–431. doi: 10.3969/j.issn.1671-1815.2020.02.001
LI S B, SONG Q S, LI Z A, et al. Review of genetic algorithm in robot path planning[J]. Science Technology and Engineering, 2020, 20(2): 423–431 (in Chinese). doi: 10.3969/j.issn.1671-1815.2020.02.001
|
[65] |
CHENG C T, FALLAHI K, LEUNG H, et al. A genetic algorithm-inspired UUV path planner based on dynamic programming[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1128–1134. doi: 10.1109/TSMCC.2011.2180526
|
[66] |
CAO J L, CAO J J, ZENG Z, et al. Optimal path planning of underwater glider in 3D Dubins motion with minimal energy consumption[C]//Oceans 2016-Shanghai. Shanghai, China: IEEE, 2015.
|
[67] |
LUCAS C, HERNADEZ-SOSA D, CALDEIRA R. Multi-objective four-dimensional glider path planning using NSGA-II[C]//2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). Porto, Portugal: IEEE, 2016.
|
[68] |
LUCAS C, HERNÁNDEZ-SOSA D, GREINER D, et al. An approach to multi-objective path planning optimization for underwater gliders[J]. Sensors, 2019, 19(24): 5506. doi: 10.3390/s19245506
|
[69] |
CAO J L, CAO J J, ZENG Z, et al. Toward optimal rendezvous of multiple underwater gliders: 3D path planning with combined sawtooth and spiral motion[J]. Journal of Intelligent & Robotic Systems, 2017, 85(1): 189–206.
|
[70] |
SHIH C C, HORNG M F, PAN T S, et al. A genetic-based effective approach to path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans[J]. Soft Computing, 2017, 21(18): 5369–5386. doi: 10.1007/s00500-016-2122-1
|
[71] |
SHIH C C, HORNG M F, PAN T S. A parallel genetic approach to path-planning with upstream-current avoidance for multi-AUG deployment[J]. Soft Computing, 2020, 24(11): 8427–8441. doi: 10.1007/s00500-019-04409-1
|
[72] |
STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328
|
[73] |
ZAMUDA A, SOSA J D H, ADLER L. Constrained differential evolution optimization for underwater glider path planning in sub-mesoscale eddy sampling[J]. Applied Soft Computing, 2016, 42: 93–118. doi: 10.1016/j.asoc.2016.01.038
|
[74] |
ZAMUDA A, SOSA J D H. Success history applied to expert system for underwater glider path planning using differential evolution[J]. Expert Systems with Applications, 2019, 119: 155–170. doi: 10.1016/j.eswa.2018.10.048
|
[75] |
ZADEH S M, YAZDANI A M, SAMMUT K, et al. Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms[J]. Applied Soft Computing, 2018, 70: 929–945. doi: 10.1016/j.asoc.2017.10.025
|
[76] |
ZANG W C, NIE Y L, SONG D L, et al. Research on constraining strategies of underwater glider's trajectory under the influence of ocean currents based on DQN algorithm[C]//Oceans 2019 MTS/IEEE Seattle. Seattle, WA, USA: IEEE, 2014.
|
[77] |
NI J J, WU L Y, WANG S H, et al. 3D real-time path planning for AUV based on improved bio-inspired neural network[C]//2016 IEEE International Conference on Consumer Electronics. Nantou, China: IEEE, 2016.
|
[78] |
SU Y S, ZHANG L, LI Y, et al. A glider-assist routing protocol for underwater acoustic networks with trajectory prediction methods[J]. IEEE Access, 2020, 8: 154560–154572. doi: 10.1109/ACCESS.2020.3015856
|
[79] |
DORIGO M. The ant system: an autocatalytic optimizing process[C]//First European Conference on Artificial Life, 1991.
|
[80] |
XIONG C K, ZENG Z, LIAN L. Path planning of multi-modal underwater vehicle for adaptive sampling using delaunay spatial partition-ant colony optimization[C]//2018 Oceans-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018, 522-537.
|
[81] |
HAN G J, ZHOU Z R, ZHANG T W, et al. Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8959–8971. doi: 10.1109/TVT.2020.2998137
|
[82] |
LI J, WANG H X. Research on AUV path planning based on improved ant colony algorithm[C]//2020 IEEE International Conference on Mechatronics and Automation. Beijing, China: IEEE, 2020.
|
[83] |
江霓. 智能路径优化方法综述[J]. 信息技术, 2016(4): 187–189. doi: 10.13274/j.cnki.hdzj.2016.04.045
JIANG N. The summarizing for intelligent path optimization method[J]. Information Technology, 2016(4): 187–189 (in Chinese). doi: 10.13274/j.cnki.hdzj.2016.04.045
|
[84] |
赵宝强. 基于粒子群改进算法的水下滑翔机路径优化[J]. 舰船科学技术, 2015, 37(8): 140–145. doi: 10.3404/j.issn.1672-7649.2015.08.029
ZHAO B Q. Underwater glider path optimization based on improved particle swarm algorithm[J]. Ship Science and Technology, 2015, 37(8): 140–145 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.08.029
|
[85] |
于文举, 丁军航, 官晟, 等. 考虑障碍物避让的水下滑翔机局部路径规划方法[J]. 传感器与微系统, 2020, 39(9): 60–62, 65. doi: 10.13873/J.1000-9787(2020)09-0060-03
YU W J, DING J H, GUAN S, et al. Local path planning method of underwater glider considering obstacle avoidance[J]. Transducer and Microsystem Technologies, 2020, 39(9): 60–62, 65 (in Chinese). doi: 10.13873/J.1000-9787(2020)09-0060-03
|
[86] |
KARABOGA D. An idea based on honey bee swarm for numerical optimization, TR06[R]. Kayseri, Turkey: Erciyes University, 2005.
|
[87] |
宋大雷, 臧文川, 郭亭亭, 等. 水下滑翔机长航程全局路径规划[J]. 控制工程, 2020, 27(10): 1679–1685. doi: 10.14107/j.cnki.kzgc.20180145
SONG D L, ZANG W C, GUO T T, et al. Global path planning for long range voyage of underwater gliders[J]. Control Engineering of China, 2020, 27(10): 1679–1685 (in Chinese). doi: 10.14107/j.cnki.kzgc.20180145
|
[88] |
ZHU X K, JIN X L, YU J C, et al. Path planning in stronger ocean current for underwater glider[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang, China: IEEE, 2015.
|
[89] |
ZHANG H H, GONG L M, CHEN T, et al. Global path planning methods of UUV in coastal environment[C]//2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016.
|
[90] |
LI J H, KANG H, PARK G H, et al. Real time path planning of underwater robots in unknown environment[C]//2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). Prague, Czech Republic: IEEE, 2017.
|
[91] |
ZHANG G L, JIA H M. Global path planning of AUV based on improved ant colony optimization algorithm[C]//2012 IEEE International Conference on Automation and Logistics. Zhengzhou, China: IEEE, 2012.
|
[92] |
ZHANG G L, JIA H M. 3D path planning of AUV based on improved ant colony optimization[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an, China: IEEE, 2013.
|
[93] |
唐旭东, 庞永杰, 李晔, 等. 基于蚁群优化的水下机器人FNN控制方法[C]//第27届中国控制会议论文集. 昆明: 中国自动化学会, 2008.
TANG X D, PANG Y J, LI Y, et al. FNN control method of underwater vehicle based on ant colony optimization[C]//Proceedings of the 27th China Control Conference. Kunming: Chinese Association of Automation, 2008 (in Chinese).
|
[94] |
ZHOU H X, ZENG Z, LIAN L. Adaptive re-planning of AUVs for environmental sampling missions: a fuzzy decision support system based on multi-objective particle swarm optimization[J]. International Journal of Fuzzy Systems, 2018, 20(2): 650–671. doi: 10.1007/s40815-017-0398-7
|
[95] |
秦洪德, 孙延超. AUV关键技术与发展趋势[J]. 舰船科学技术, 2020, 42(12): 25–28. doi: 10.3404/j.issn.1672-7649.2020.12.005
QIN H D, SUN Y C. Analysis of the status and development of foreign AUV[J]. Ship Science and Technology, 2020, 42(12): 25–28 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.12.005
|
[96] |
刘志伟. 多元测距AUV环境感知与自主规避方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
LIU Z W. Research on environment perception and autonomous collision avoidance of the AUV based on multi-sonar array[D]. Harbin: Harbin Engineering University, 2011 (in Chinese).
|
[97] |
高照东. 智能决策技术原理及应用[J]. 商情(教育经济研究), 2008(2): 19–20.
GAO Z D. Principle and application of intelligent decision technology[J]. Business Information (Research on Educational Economy), 2008(2): 19–20 (in Chinese).
|
[98] |
吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31.
WU Y S, ZHAO Y Y, LANG S Y, et al. Development of autonomous underwater vehicles technology[J]. Strategic Study of CAE, 2020, 22(6): 26–31 (in Chinese).
|
[99] |
孙叶义, 武皓微, 李晔, 等. 智能无人水下航行器水下回收对接技术综述[J]. 哈尔滨工程大学学报, 2019, 40(1): 1–11. doi: 10.11990/jheu.201712014
SUN Y Y, WU H W, LI Y, et al. Summary of AUV underwater recycle docking technology[J]. Journal of Harbin Engineering University, 2019, 40(1): 1–11 (in Chinese). doi: 10.11990/jheu.201712014
|
[100] |
刘子琪, 兰世泉, 杨绍琼, 等. 基于水下滑翔机平台的海洋声学探测技术发展现状与展望[J]. 数字海洋与水下攻防, 2021, 4(1): 8–14. doi: 10.19838/j.issn.2096-5753.2021.01.002
LIU Z Q, LAN S Q, YANG S Q, et al. Development status and prospect of ocean acoustic detection technology based on underwater glider platform[J]. Digital Ocean & Underwater Warfare, 2021, 4(1): 8–14 (in Chinese). doi: 10.19838/j.issn.2096-5753.2021.01.002
|