QIAN Hao, SONG Kewei, GUO Chunyu, GONG Jie. Influence of waterjet duct on ship's resistance performance[J]. Chinese Journal of Ship Research, 2017, 12(2): 22-29. doi: 10.3969/j.issn.1673-3185.2017.02.003
Citation: QIAN Hao, SONG Kewei, GUO Chunyu, GONG Jie. Influence of waterjet duct on ship's resistance performance[J]. Chinese Journal of Ship Research, 2017, 12(2): 22-29. doi: 10.3969/j.issn.1673-3185.2017.02.003

Influence of waterjet duct on ship's resistance performance

doi: 10.3969/j.issn.1673-3185.2017.02.003
  • Received Date: 2016-07-04
    Available Online: 2017-03-13
  • Publish Date: 2017-04-01
    © 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The waterjet duct can change the flow field of the stern, and it has a great influence on the resistance performance of the ship. The resistance performance of marine vehicles driven by waterjets is very different from that of conventional ships, so it is meaningful to study the changes to the resistance performance of the ship. We used the CFD software STAR-CCM +, treated the waterjet duct as the appendage and compared the change of the flow field in the stern after the installation of the waterjet duct at different angles. We described the change mechanism of the ship's resistance and resistance components by comparing the change in pressure distribution of the waterjet duct's surface and the flow field around the hull. The results show that STAR-CCM+ can realize the prediction of ship resistance performance because the simulation results achieved perfect accuracy, and it is gradually becoming the development direction of the resistance performance prediction of marine vehicles driven by waterjets. The installation of the waterjet duct will increase the resistance of the ship, which is mainly due to the increase of pressure resistance. In addition, the resistance performance of a ship driven by waterjets can be improved by the optimization of the waterjet duct's angle.
  • loading
  • [1]
    李鑫. 高速艇喷水推进器流场特性数值模拟[D]. 镇江: 江苏科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034585.htm
    刘柱, 孟凡立.船舶喷水推进技术发展[J].船海技术, 2004(4):42-44. http://www.cnki.com.cn/Article/CJFDTOTAL-HHJS200404024.htm

    LIU Z, MENG F L. The development on technology of water jet propulsion for ship[J]. Marine Technology, 2004(4):42-44(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HHJS200404024.htm
    王立祥.船舶喷水推进[J].船舶, 1997(3):45-52.
    孙村楼, 王永生. CFD在船舶喷水推进器设计与性能分析中的应用[J].哈尔滨工程大学学报, 2008, 29(5):444-448. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200805001.htm

    SUN C L, WANG Y S. Computational fluid dynamics for marine waterjet design and performance analysis[J]. Journal of Harbin Engineering University, 2008, 29(5):444-448(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200805001.htm
    VAN TERWISGA T. Waterjet-hull interaction[D]. Delft:Delft University of Technology, 1996.
    BRIZZOLARA S, BRUZZONE D. Hydrodynamic opti-misation of high-speed trimaran hull forms[C]//Pro-ceedings of the 18th International Offshore and Polar Engineering Conference. Vancouver, BC, Canada:ISOPE, 2008:547-554.
    CARR B. Investigation of trimaran interference effects[D]. Glen Cove:Webb Institute, 2007.
    MIZINE I, KARAFIATH G, QUEUTEY P, et al. In-terference phenomenon in design of trimaran ship[C]//Proceedings of the 10th International Conference on Fast Sea Transportation-FAST. Athens, Greece:Pow-er and Rotary Systems, 2009.
    高双. 喷水推进船舶的航向/航速控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
    葛宜龙. 采用喷水推进器的三体船尾部形状与阻力性能关系研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
    于大伟. 喷水推进三体船流场及阻力预报[D]. 哈尔滨: 哈尔滨工程大学, 2011.
    丁江明, 王永生.喷水推进器进水流道参数化设计与应用[J].上海交通大学学报, 2010, 44(10):1423-1428. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201010023.htm

    DING J M, WANG Y S. Parametric design and appli-cation of inlet duct of marine waterjet[J]. Journal of Shanghai Jiaotong University, 2010, 44(10):1423-1428(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201010023.htm
    刘承江, 王永生, 张志宏.喷水推进器数值模拟所需流场控制体的研究[J].水动力学研究与进展, 2008, 23(5):592-595. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm

    LIU C J, WANG Y S, ZHANG Z H. Study on flow control volume in numerical simulation of waterjet propulsor[J]. Chinese Journal of Hydrodynamics, 2008, 23(5):592-595(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm
    毛筱菲, 汤苏林.边界层对喷水推进器进水管内流场影响[J].水动力学研究与进展, 2005, 20(4):479-485. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200504010.htm

    MAO X F, TANG S L. Numerical study of boundary layer effects on waterjet intakes flow and pressure dis-tribution[J]. Journal of Hydrodynamics, 2005, 20(4):479-485(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200504010.htm
    张志荣, 赵峰, 李百奇. k-ω湍流模式在船舶粘性流场计算中的应用[J].船舶力学, 2003, 7(1):33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200301005.htm

    ZHANG Z R, ZHAO F, LI B Q. Application of k-ω turbulence model to computation of viscous flow field around a ship[J]. Journal of Ship Mechanics, 2003, 7(1):33-37(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200301005.htm
  • 2017-2-22_en.pdf
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article Views(497) PDF Downloads(240) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint