Citation: | YU J W, YAO C B, ZHANG Z G, et al. Numerical prediction method of shafting power characteristics of free self-propelled ship in waves[J]. Chinese Journal of Ship Research, 2022, 17(3): 119–125 doi: 10.19693/j.issn.1673-3185.02733 |
[1] |
ZHANG L, ZHANG J N, SHANG Y C. A practical direct URANS CFD approach for the speed loss and propulsion performance evaluation in short-crested irregular head waves[J]. Ocean Engineering, 2021, 219: 108287. doi: 10.1016/j.oceaneng.2020.108287
|
[2] |
SIMONSEN C D, OTZEN J F, JONCQUEZ S, et al. EFD and CFD for KCS heaving and pitching in regular head waves[J]. Journal of Marine Science and Technology, 2013, 18(4): 435–459. doi: 10.1007/s00773-013-0219-0
|
[3] |
魏成柱, 易宏, 李英辉. 新概念高速穿梭艇系列船型及其直航性能[J]. 中国舰船研究, 2017, 12(2): 12–21. doi: 10.3969/j.issn.1673-3185.2017.02.002
WEI C Z, YI H, LI Y H. Hull forms and straight forward CFD free running trials of high-speed shuttle vessels[J]. Chinese Journal of Ship Research, 2017, 12(2): 12–21 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.002
|
[4] |
张明霞, 卢鹏程, 王志豪. 小水线面三体船耐波性数值模拟[J]. 中国舰船研究, 2020, 15(4): 135–143,152.
ZHANG M X, LU P C, WANG Z H. Numerical simulation of seakeeping performance of a trimaran small waterplane area center hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 135–143,152 (in Chinese).
|
[5] |
JIN Y T, CHAI S H, DUFFY J, et al. URANS predictions of wave induced loads and motions on ships in regular head and oblique waves at zero forward speed[J]. Journal of Fluids and Structures, 2017, 74: 178–204. doi: 10.1016/j.jfluidstructs.2017.07.009
|
[6] |
王建华, 万德成. 自航船舶在首斜浪中航向保持的数值模拟[J]. 水动力学研究与进展(A辑), 2018, 33(6): 740–748.
WANG J H, WAN D C. Numerical investigations of free running ship in bow quartering waves under course keeping control[J]. Chinese Journal of Hydrodynamics, 2018, 33(6): 740–748 (in Chinese).
|
[7] |
LEE C M, SEO J H, YU J W, et al. Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 883–898. doi: 10.1016/j.ijnaoe.2019.02.001
|
[8] |
FENG D K, YU J W, HE R, et al. Improved body force propulsion model for ship propeller simulation[J]. Applied Ocean Research, 2020, 104: 102328. doi: 10.1016/j.apor.2020.102328
|
[9] |
FENG D K, YU J W, HE R, et al. Free running computations of KCS with different propulsion models[J]. Ocean Engineering, 2020, 214: 107563. doi: 10.1016/j.oceaneng.2020.107563
|
[10] |
YU J W, YAO C B, LIU L W, et al. Assessment of full-scale KCS free running simulation with body-force models[J]. Ocean Engineering, 2021, 237: 109570. doi: 10.1016/j.oceaneng.2021.109570
|
[11] |
ZHANG Z G, GUO L X, WEI P, et al. Numerical simulation of submarine surfacing motion in regular waves[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2020, 44(2): 359–372. doi: 10.1007/s40997-018-0259-5
|
[12] |
LIU L W, CHEN M X, YU J W, et al. Full-scale simulation of self-propulsion for a free-running submarine[J]. Physics of Fluids, 2021, 33(4): 047103. doi: 10.1063/5.0041334
|
[13] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
|
[14] |
BURG C O E. Single-phase level set simulations for unstructured incompressible flows[C]//17th AIAA Computational Fluid Dynamics Conference. Toronto, Canada: American Institute of Aeronautics and Astronautics Inc., 2005.
|
[15] |
冯大奎, 鲁晶晶, 魏鹏, 等. 基于Level-set方法的三维数值水池造波研究[J]. 水动力学研究与进展(A辑), 2018, 33(4): 435–444.
FENG D K, LU J J, WEI P, et al. The research of wave-generating in 3-D numerical wave tank based on level-set method[J]. Chinese Journal of Hydrodynamics, 2018, 33(4): 435–444 (in Chinese).
|
[16] |
CARRICA P M, CASTRO A M, STERN F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of Marine Science and Technology, 2010, 15(4): 316–330. doi: 10.1007/s00773-010-0098-6
|
[17] |
Tokyo 2015. A workshop on CFD in ship hydrodynamics[DB/OL]. (2015-12-2)[ 2021-12-30]. https://t2015.nmri.go.jp/index.html.
|
[18] |
李亭鹤, 阎超. 二维DRAGON网格自动生成技术的研究[J]. 空气动力学学报, 2005, 23(1): 88–92. doi: 10.3969/j.issn.0258-1825.2005.01.017
LI T H, YAN C. Investigation of automatic generation technique for two-dimensional DRAGON grid[J]. Acta Aerodynamica Sinica, 2005, 23(1): 88–92 (in Chinese). doi: 10.3969/j.issn.0258-1825.2005.01.017
|
[19] |
李亭鹤. 重叠网格自动生成方法研究[D]. 北京: 北京航空航天大学, 2004.
LI T H. Investigation of chimera grid automatic generation algorithm[D]. Beijing: Beihang University, 2004 (in Chinese).
|
[20] |
SANADA Y, KIM D H, SADAT-HOSSEINI H, et al. Assessment of experimental and CFD capability for KCS added power in head and oblique waves[C]//33rd Symposium on Naval Hydrodynamics. Osaka, Japan: [s. n. ], 2020.
|
![]() |
![]() |