Citation: | YANG X, GU G X, SUN S C, et al. Dynamic and tribological coupling analysis of journal bearing based on dynamic substructure[J]. Chinese Journal of Ship Research, 2021, 16(6): 201–208, 215 doi: 10.19693/j.issn.1673-3185.02265 |
[1] |
李正民, 何琳, 徐伟, 等. 轴承润滑特性对船舶推进轴系校中的影响[J]. 中国舰船研究, 2016, 11(6): 104–111. doi: 10.3969/j.issn.1673-3185.2016.06.016
LI Z M, HE L, XU W, et al. The influence of bearing lubrication characteristics on marine propulsion shaft alignment[J]. Chinese Journal of Ship Research, 2016, 11(6): 104–111 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.016
|
[2] |
孙谦, 刘文玺, 周其斗. 推力轴承基座结构形式对潜艇振动噪声的影响[J]. 中国舰船研究, 2018, 13(5): 39–45. doi: 10.19693/j.issn.1673-3185.01099
SUN Q, LIU W X, ZHOU Q D. Influence of thrust bearing seating on acoustic radiation of submarine[J]. Chinese Journal of Ship Research, 2018, 13(5): 39–45 (in Chinese). doi: 10.19693/j.issn.1673-3185.01099
|
[3] |
WANG D E, KEITH T G, YANG Q M, et al. Lubrication analysis of a connecting-rod bearing in a high-speed engine. Part II: lubrication performance evaluation for non-circular bearings[J]. Tribology Transactions, 2004, 47(2): 290–298. doi: 10.1080/05698190490439436
|
[4] |
WANG D E, KEITH T G, YANG Q M, et al. Lubrication analysis of a connecting-rod bearing in a high-speed engine. Part I: rod and bearing deformation[J]. Tribology Transactions, 2004, 47(2): 280–289. doi: 10.1080/05698190490439346
|
[5] |
CRAIG JR R R, BAMPTON M C C. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7): 1313–1319. doi: 10.2514/3.4741
|
[6] |
CRAIG JR R R, CHANG C J. Free-interface methods of substructure coupling for dynamic analysis[J]. American Institute of Aeronautics and Astronautics, 1976, 14(11): 1633–1635. doi: 10.2514/3.7264
|
[7] |
杜大华, 贺尔铭, 李锋. 基于多重动态子结构法的大型复杂结构动力分析技术[J]. 推进技术, 2018, 39(8): 1849–1855.
DU D H, HE E M, LI F. Dynamics analysis technology of large-scale complex structures based on multilevel dynamic substructure method[J]. Journal of Propulsion Technology, 2018, 39(8): 1849–1855 (in Chinese).
|
[8] |
李红. 碰摩转子系统动力学特性及其故障分析研究[D]. 北京: 华北电力大学, 2016.
LI H. Research on dynamic characteristics and fault analysis of rubbing rotor system[D]. Beijing: North China Electric Power University, 2016 (in Chinese).
|
[9] |
GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625–633. doi: 10.1243/PIME_PROC_1970_185_069_02
|
[10] |
PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220–229. doi: 10.1115/1.3453329
|
[11] |
BUKOVNIK S, DÖRR N, ČAIKA V, et al. Analysis of diverse simulation models for combustion engine journal bearings and the influence of oil condition[J]. Tribology International, 2006, 39(8): 820–826. doi: 10.1016/j.triboint.2005.07.023
|
[12] |
卢伯聪, 向建华, 庄林毅. 基于动态子结构的主轴承热弹性流体润滑研究[J]. 润滑与密封, 2012, 37(1): 22–28. doi: 10.3969/j.issn.0254-0150.2012.01.006
LU B C, XIANG J H, ZHUANG L Y. Thermo-elastohydrodynamic lubrication research on engine main bearings based on the dynamic substructure theory[J]. Lubrication Engineering, 2012, 37(1): 22–28 (in Chinese). doi: 10.3969/j.issn.0254-0150.2012.01.006
|
[13] |
ALLMAIER H, PRIESTNER C, REICH F M, et al. Predicting friction reliably and accurately in journal bearings–the importance of extensive oil-models[J]. Tribology International, 2012, 48: 93–101. doi: 10.1016/j.triboint.2011.11.009
|