Citation: | CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98–108 doi: 10.19693/j.issn.1673-3185.02236 |
[1] |
XIANG X B, LAPIERRE L, JOUVENCEL B. Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration[J]. Robotics and Autonomous Systems, 2015, 67: 14–22.
|
[2] |
SANTHAKUMAR M, ASOKAN T. Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration[J]. Ocean Engineering, 2013, 58: 11–21.
|
[3] |
LI H P, YAN W S. Model predictive stabilization of constrained underactuated autonomous underwater vehicles with guaranteed feasibility and stability[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1185–1194.
|
[4] |
SHEN C, SHI Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking[J]. Automatica, 2020, 115: 108863.
|
[5] |
QIAO L, ZHANG W D. Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 29–53.
|
[6] |
王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227–241. doi: 10.3969/j.issn.1000-4882.2010.02.030
WANG F, WAN L, LI Y, et al. A survey on development of motion control for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227–241 (in Chinese). doi: 10.3969/j.issn.1000-4882.2010.02.030
|
[7] |
QIAO L, ZHANG W D. Double-loop chattering-free adaptive integral sliding mode control for underwater vehicles[C]//OCEANS 2016-Shanghai. Shanghai: IEEE, 2016: 1-6.
|
[8] |
REZAZADEGAN F, SHOJAEI K, SHEIKHOLESLAM F, et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107: 246–258.
|
[9] |
GUERRERO J, TORRES J, CREUZE V, et al. Trajectory tracking for autonomous underwater vehicle: an adaptive approach[J]. Ocean Engineering, 2019, 172: 511–522.
|
[10] |
QIAO L, ZHANG W D. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles[J]. IET Control Theory & Applications, 2017, 11(8): 1293–1306.
|
[11] |
孙巧梅, 陈金国, 余万. 水下航行器三维航迹反演滑模跟踪控制[J]. 舰船科学技术, 2019, 41(1): 66–70. doi: 10.3404/j.issn.1672-7649.2019.01.012
SUN Q M, CHEN J G, YU W. 3D trajectory-tracking control of autonomous underwater vehicles based on backstepping and sliding mode method[J]. Ship Science and Technology, 2019, 41(1): 66–70 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.01.012
|
[12] |
魏斯行, 刘晗, 马宁, 等. 基于反步控制和神经动力学模型的带缆水下潜器航迹跟踪[J]. 舰船科学技术, 2020, 42(1): 88–94. doi: 10.3404/j.issn.1672-7649.2020.01.018
WEI S H, LIU H, MA N, et al. Tracking control for tethered underwater vehicle based on backstepping mode and neurodynamics model[J]. Ship Science and Technology, 2020, 42(1): 88–94 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.01.018
|
[13] |
张伟, 滕延斌, 魏世琳, 等. 欠驱动UUV自适应RBF神经网络反步跟踪控制[J]. 哈尔滨工程大学学报, 2018, 39(1): 93–99.
ZHANG W, TENG Y B, WEI S L, et al. Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J]. Journal of Harbin Engineering University, 2018, 39(1): 93–99 (in Chinese).
|
[14] |
严浙平, 段海璞. UUV航迹跟踪的双闭环Terminal滑模控制[J]. 中国舰船研究, 2015, 10(4): 112–117, 142. doi: 10.3969/j.issn.1673-3185.2015.04.017
YAN Z P, DUAN H P. A double closed-loop Terminal sliding mode controller for the trajectory tracking of UUV[J]. Chinese Journal of Ship Research, 2015, 10(4): 112–117, 142 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.04.017
|
[15] |
WANG N, KARIMI H R. Successive waypoints tracking of an underactuated surface vehicle[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 898–908.
|
[16] |
WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9648–9658.
|
[17] |
邓琪. 四旋翼飞行器高精度跟踪控制研究[D]. 大连: 大连海事大学, 2019.
DENG Q. High-precision tracking control of a quadrotor aircraft[D]. Dalian: Dalian Maritime University, 2019 (in Chinese).
|
[18] |
BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041). Albuquerque: IEEE, 1997: 2513-2514.
|
[19] |
SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: missile guidance application[J]. Automatica, 2007, 43(8): 1470–1476.
|
[20] |
FOSSEN T I. Guidance and control of ocean vehicles[M]. Chichester: Wiley, 1994.
|
[21] |
FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159–2167.
|
[22] |
梁松. 水下检测与作业机器人ROV控制系统研制及动力定位研究[D]. 镇江: 江苏科技大学, 2017.
LIANG S. Research on the control system development and dynamic positioning of underwater detection and operation ROV[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017 (in Chinese).
|
[23] |
WANG N, HE H K. Extreme learning-based monocular visual servo of an unmanned surface vessel[J]. IEEE Transactions on Industrial Informatics, 2020. doi: 10.1109/TII.2020.3033794.
|
[24] |
WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 794–803.
|
[25] |
WANG N, Er M J. Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 991–1002.
|
[26] |
WANG N, DENG Q, XIE G M, et al. Hybrid finite-time trajectory tracking control of a quadrotor[J]. ISA Transactions, 2019, 90: 278–286.
|
![]() |
![]() |