Volume 16 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
LIN X H, YANG D P, GONG C L, et al. Aircraft maximum density layout algorithm based on multi-constraint two-dimensional packing[J]. Chinese Journal of Ship Research, 2021, 16(6): 27–33 doi: 10.19693/j.issn.1673-3185.02022
Citation: LIN X H, YANG D P, GONG C L, et al. Aircraft maximum density layout algorithm based on multi-constraint two-dimensional packing[J]. Chinese Journal of Ship Research, 2021, 16(6): 27–33 doi: 10.19693/j.issn.1673-3185.02022

Aircraft maximum density layout algorithm based on multi-constraint two-dimensional packing

doi: 10.19693/j.issn.1673-3185.02022
  • Received Date: 2020-07-03
  • Accepted Date: 2021-11-15
  • Rev Recd Date: 2020-12-08
  • Available Online: 2021-12-02
  • Publish Date: 2021-12-20
    © 2021 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  A multi-constraint two-dimensional packing algorithm is used to determine the carrier-based aircraft maximum density layout factor.  Methods  First, the constraints are presented. Then, based on a lowest-gravity-center NFP algorithm combined with mathematics modeling for the distance constraints and a heuristic algorithm for the "keep-to-the-boundary" spotting, an entire maximum density layout algorithm for a flight and hanger deck is presented.  Results  Using this algorithm, the maximum layout number of F/A-18C and F-35C aircraft on a Nimitz-class aircraft carrier is determined, as well as the layout factor of F-35C aircraft, and the results are consistent with the known facts.  Conclusions  With this algorithm, the maximum density layout factor of aircraft can be quickly calculated, making it useful for guiding the suitable layout design of newly-built carrier-based aircraft.
  • loading
  • [1]
    朱英富, 熊治国, 胡玉龙. 航空母舰发展的思考[J]. 中国舰船研究, 2016, 11(1): 1–7. doi: 10.3969/j.issn.1673-3185.2016.01.001

    ZHU Y F, XIONG Z G, HU Y L. On the development trends of aircraft carriers[J]. Chinese Journal of Ship Research, 2016, 11(1): 1–7 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.001
    [2]
    刘相春. 航空母舰舰机适配性技术体系[J]. 中国舰船研究, 2016, 11(3): 1–4,10. doi: 10.3969/j.issn.1673-3185.2016.03.001

    LIU X C. A technology system for the carrier/air vehicle integration[J]. Chinese Journal of Ship Research, 2016, 11(3): 1–4,10 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.001
    [3]
    WHITTENBURY J R. Configuration design development of the navy UCAS-D X-47B [C]//AIAA Centennial of Naval Aviation Forum: "100 Years of Achievement and Progress”. Virginia Beach, VA: AIAA, 2011: 6-7.
    [4]
    RYBERG E S. The influence of ship configuration on the design of the joint strike fighte: ADA399988 [R].Arlington, VA: Joint Strike Fighter Program Office, 2002.
    [5]
    Maximum density aircraft spotting CV and CVN aircraft carriers, LPH, LHA, and LHD class ships: NAEC-ENG-7604 [S]. Revision U, [S.1.]:[s.n],1994.
    [6]
    李耀宇, 朱一凡, 齐鸣, 等. 舰载机甲板布列调运优化方法研究[J]. 指挥控制与仿真, 2013, 35(2): 125–131. doi: 10.3969/j.issn.1673-3819.2013.02.029

    LI Y Y, ZHU Y F, QI M, et al. An overview of aircraft allocation and transferring on carrier flight-deck[J]. Command Control & Simulation, 2013, 35(2): 125–131 (in Chinese). doi: 10.3969/j.issn.1673-3819.2013.02.029
    [7]
    AGRAWAL P K. Minimising trim loss in cutting rectangular blanks of a single size from a rectangular sheet using orthogonal guillotine cuts[J]. European Journal of Operational Research, 1993, 64(3): 410–422. doi: 10.1016/0377-2217(93)90130-F
    [8]
    卞大鹏, 栾添添, 宋晔. 基于模拟退火算法的舰载机布列方法研究[J]. 应用科技, 2015, 42(4): 20–24.

    BIAN D P, LUAN T T SONG Y. A layout method of carrier-based aircraft based on simulated annealing[J]. Applied Science and Technology, 2015, 42(4): 20–24 (in Chinese).
    [9]
    ADAMOWICZ M, ALBANO A. Nesting two-dimensional shapes in rectangular modules[J]. Computer-Aided Design, 1976, 8(1): 27–33. doi: 10.1016/0010-4485(76)90006-3
    [10]
    张思. 舰载机自动布列方法的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHANG S. Research on the automatic layout method of the aircraft [D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
    [11]
    刘胡瑶. 基于临界多边形的二维排样算法研究[D]. 上海: 上海交通大学, 2007.

    LIU H Y. Research of two dimensional nesting algorithm based on no fit polygon [D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
    [12]
    李文学. 多约束二维排样算法研究与应用[D]. 武汉: 华中科技大学, 2016.

    LI W X. Research and application of polygon's packing optimization with multiple constraints[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese)
    [13]
    DARWIN R L, BOWMAN H L, HUNSTAD M, et al. Aircraft carrier flight and hangar deck fire protection: history and current status [R]. California: Naval Air Warfare Center, 2005.
    [14]
    U. S. General Accounting Office (GAO). Navy aircraft carriers: cost-effectiveness of conventionally and nuclear-powered carriers [R]. Washington, DC: GAO, 1998.
  • ZG2022_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (323) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return