JIN Kefan, WANG Hongdong, YI Hong, LIU Jingyang, WANG Jian. Key technologies and intelligence evolution of maritime UV[J]. Chinese Journal of Ship Research, 2018, 13(6): 1-8. doi: 10.19693/j.issn.1673-3185.01293
Citation: JIN Kefan, WANG Hongdong, YI Hong, LIU Jingyang, WANG Jian. Key technologies and intelligence evolution of maritime UV[J]. Chinese Journal of Ship Research, 2018, 13(6): 1-8. doi: 10.19693/j.issn.1673-3185.01293

Key technologies and intelligence evolution of maritime UV

doi: 10.19693/j.issn.1673-3185.01293
  • Received Date: 2018-05-17
    Available Online: 2018-11-26
  • Publish Date: 2018-12-03
    © 2018 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
    This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • In recent years, the technologies of maritime Unmanned Vehicle (UV) have developed rapidly, and especially because the development of artificial intelligence technology, it has made great breakthroughs in the functions and performance of the maritime UV. The development status of the maritime UV technology at home and abroad is reviewed, and then the key technologies for the maritime UV are analyzed. On this basis, a set of classification criteria for the intelligent levels of the maritime UV is proposed, and the operational capabilities and characteristics of the UVs at different intelligent levels are defined in detail, and the key technologies for evolution between levels are clarified. This provides a theoretical basis for the development of the maritime UV.
  • loading
  • [1]
    CAMPBELL S, NAEEMW, IRWIN GW. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres[J]. Annual Reviews in Control, 2012, 36(2):267-283. doi: 10.1016/j.arcontrol.2012.09.008
    [2]
    American Navy. Unmanned systems intergrated roadmapfy: 2013-2038[R]. USA: Department of Defense, 2013.
    [3]
    徐玉如, 苏玉民, 庞永杰.海洋空间智能无人运载器技术发展展望[J].中国舰船研究, 2006, 1(3):1-4. doi: 10.3969/j.issn.1673-3185.2006.03.001

    XU Y R, SU Y M, PANG Y J. Expectation ofthe development in the technology on ocean space intelligent unmanned vehicles[J]. Chinese Journal of Ship Research, 2006, 1(3):1-4(in Chinese). doi: 10.3969/j.issn.1673-3185.2006.03.001
    [4]
    American Navy. The navy unmanned undersea vehicle (UUV) master plan[R]. USA: Department of Defense, 2004.
    [5]
    American Navy. The navy unmanned surface vehicle (USV)master plan[R]. USA: Department of Defense, 2007.
    [6]
    万接喜.外军无人水面艇发展现状与趋势[J].国防科技, 2014, 35(5):91-96. http://d.old.wanfangdata.com.cn/Periodical/gfkj201405021

    WAN J X. Status and development trends of foreign military unmanned surface boats[J]. National Defense Science & Technology, 2014, 35(5):91-96(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkj201405021
    [7]
    李家良.无人水面艇发展与应用[J].火力与指挥控制, 2012, 37(6):203-207. doi: 10.3969/j.issn.1002-0640.2012.06.053

    LI J L. Development and application of unmanned surface vehicle[J]. Fire Control & Command Control, 2012, 37(6):203-207(in Chinese). doi: 10.3969/j.issn.1002-0640.2012.06.053
    [8]
    熊亚洲, 张晓杰, 冯海涛, 等.一种面向多任务应用的无人水面艇[J].船舶工程, 2012, 34(1):16-19. doi: 10.3969/j.issn.1000-6982.2012.01.005

    XIONG Y Z, ZHANG X J, FENG H T, et al. An unmanned surface vehicle for multi-mission applications[J]. Ship Engineering, 2012, 34(1):16-19(in Chinese). doi: 10.3969/j.issn.1000-6982.2012.01.005
    [9]
    徐玉如, 李彭超.水下机器人发展趋势[J].自然杂志, 2011, 33(3):125-132. http://d.old.wanfangdata.com.cn/Periodical/zrzz201103001

    XU Y R, LI P C. Developing tendency of unmanned underwater vehicles[J]. Chinese Journal of Nature, 2011, 33(3):125-132(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zrzz201103001
    [10]
    潘光, 宋保维, 黄桥高, 等.水下无人系统发展现状及其关键技术[J].水下无人系统学报, 2017, 25(2):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201702005.htm

    PAN G, SONG B W, HUANG Q G, et al. Development and key techniques of unmanned undersea system[J]. Journal of Unmanned Undersea Systems, 2017, 25(2):44-51(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201702005.htm
    [11]
    连琏, 马厦飞, 陶军."海马"号4500米级ROV系统研发历程[J].船舶与海洋工程, 2015, 31(1):9-12. doi: 10.3969/j.issn.2095-4069.2015.01.003

    LIAN L, MA X F, TAO J. R & D process of 4500 m ROV system"Hai Ma"[J]. Naval Architecture and Ocean Engineering, 2015, 31(1):9-12(in Chinese). doi: 10.3969/j.issn.2095-4069.2015.01.003
    [12]
    易宏, 梁晓锋.泛可靠性工程理论与实践[M].上海:上海交通大学出版社, 2017.
    [13]
    刁海龙.反水雷、反潜、反导和反恐的利剑——无人水面艇系统[J].水雷战与舰船防护, 2011, 19(1):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102959051

    DIAO H L. Unmanned surface vehicle system the sword of MCM, ASW, anti-missile and anti-terrorism[J]. Mine Warfare & Ship Self-Defence, 2011, 19(1):1-5(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102959051
    [14]
    陈波, 金瓯, 涂娟.海上超短波通信距离分析[J].舰船科学技术, 2010, 32(6):88-90, 127. http://d.old.wanfangdata.com.cn/Periodical/jckxjs201006020

    CHEN B, JIN O, TU J. Analysis of marine ultra-short wave communication distance[J]. Ship Science and Technology, 2010, 32(6):88-90, 127(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jckxjs201006020
    [15]
    钱东, 唐献平, 赵江. UUV技术发展与系统设计综述[J].鱼雷技术, 2014, 22(6):401-414, 419. doi: 10.3969/j.issn.1673-1948.2014.06.001

    QIAN D, TANG X P, ZHAO J. Overview of technology development and system design of UUVs[J]. Torpedo Technology, 2014, 22(6):401-414, 419(in Chinese). doi: 10.3969/j.issn.1673-1948.2014.06.001
    [16]
    许志杰, 王晶, 刘颖.计算机视觉核心技术现状与展望[J].西安邮电学院学报, 2012, 17(6):1-8. http://d.old.wanfangdata.com.cn/Periodical/xaydxyxb201206002

    XU Z J, WANG J, LIU Y. A review of computer vision development and trends[J]. Journal of Xi'an University of Posts and Telecommunications, 2014, 17(6):1-8(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xaydxyxb201206002
    [17]
    SERMANET P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition, localization and detection using convolutional networks[J]. arXivpreprint arXiv: 1312.6229, 2013.
    [18]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014, 2: 2672-2680.
    [19]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXivpreprint arXiv: 1409.1556, 2014.
    [20]
    JOHNSON J, HARIHARAN B, VAN DER MAATEN L, et al. Inferring and executing programs for visual reasoning[J]. arXivpreprint arXiv: 1705.03633, 2017: 3008-3017.
    [21]
    SANTORO A, RAPOSO D, BARRETT D G T, et al. A simple neural network module for relational reasoning[J]. arXivpreprint arXiv: 1706.01427, 2017.
    [22]
    SUTTON R S, BARTO A G. Reinforcement learning:an introduction[M].Cambridge:MIT Press, 1998:216-224.
    [23]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXivpreprint arXiv: 1509.02971, 2015.
    [24]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[J]. arXivpreprint arXiv: 1312.5602, 2013.
    [25]
    HO J, ERMON S. Generative adversarial imitation learning[J]. arXivpreprint arXiv: 1606.03476, 2016.
    [26]
    RUSU A A, VECERIK M, ROTHÖRL T, et al. Sim-to-real robot learning from pixels with progressive nets[J]. arXivpreprint arXiv: 1610.04286, 2016.
    [27]
    TAYLOR M E, STONE P. Transfer learning for reinforcement learning domains:a survey[J]. Journal of Machine Learning Research, 2009, 10:1633-1685. http://dl.acm.org/citation.cfm?id=1755839
    [28]
    FINN C, YU T H, ZHANG T H, et al. One-shot visual imitation learning via meta-learning[J]. arXivpreprint arXiv: 1709.04905, 2017.
    [29]
    马忠丽, 文杰, 梁秀梅, 等.无人艇视觉系统多类水面目标特征提取与识别[J].西安交通大学学报, 2014, 48(8):60-66. http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201408011

    MA Z L, WEN J, LIANG X M, et al. Extraction and recognition of features from multi-types of surface targets for visual systems in unmanned surface vehicle[J]. Journal of Xi'an JiaoTong University, 2014, 48(8):60-66.(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xajtdxxb201408011
    [30]
    齐小伟, 任光.基于领导跟随的船舶航迹控制[J].船舶, 2016, 27(1):92-99. http://d.old.wanfangdata.com.cn/Periodical/cb201601015

    QI X W, REN G. Ship track control based on leader-follower[J]. Ship & Boat, 2016, 27(1):92-99(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cb201601015
    [31]
    LILLICRAPT P, HUNT J J, PRITZEL, A, et al. Continuous control with deep reinforcement learning[J]. arXivpreprint arXiv: 1509.02971, 2015.
  • 2018-6-1_en.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article Views(1650) PDF Downloads(512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return