留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶艉部激励耦合振动噪声机理研究进展与展望

华宏星 俞强

华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6-16. doi: 10.3969/j.issn.1673-3185.2017.04.002
引用本文: 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6-16. doi: 10.3969/j.issn.1673-3185.2017.04.002
HUA Hongxing, YU Qiang. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6-16. doi: 10.3969/j.issn.1673-3185.2017.04.002
Citation: HUA Hongxing, YU Qiang. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6-16. doi: 10.3969/j.issn.1673-3185.2017.04.002

船舶艉部激励耦合振动噪声机理研究进展与展望

doi: 10.3969/j.issn.1673-3185.2017.04.002
基金项目: 国家级重大基础研究项目
详细信息
    作者简介:

    华宏星, 男, 1955年生, 博士, 教授, 博士生导师。研究方向:振动控制技术在减振、抗冲、降噪中的应用。E-mail:hhx@sjtu.edu.cn

    通信作者:

    俞强(通信作者), 男, 1969年生, 硕士, 高级工程师

  • 中图分类号: U661.44

Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research

知识共享许可协议
船舶艉部激励耦合振动噪声机理研究进展与展望华宏星,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  船舶减振技术经过几十年的发展,降低艉部激励引起的桨—轴—船体振动辐射噪声成为我国现阶段船舶声隐身的紧迫任务。  方法  针对船舶艉部激励耦合振动噪声问题,从船舶螺旋桨激励力特性、桨—轴—船体耦合振动噪声特性及其控制方法3个方面对当前研究进展与发展趋势进行综述,  结果  得到了船舶艉部激励与桨—轴—船体系统振动噪声的映射关系,并提出了针对低频振动噪声的控制方法。  结论  在此基础上对在螺旋桨非定常力测试、艉轴承摩擦诱导振动机理和桨—轴系统横向振动控制等方面提出进一步开展研究的建议。
  • 图  1  艉部激励示意图

    Figure  1.  Schematic of ship stern excitation

    图  2  螺旋桨计算模型

    Figure  2.  Calculation model of the propeller

    图  3  某典型工况下螺旋桨轴承力辨识结果频谱图[4-5]

    Figure  3.  Requency spectrum identification results of propeller bearing force for typical operating condition[4-5]

    图  4  艉轴承刚度变化对轴承动载荷的影响规律

    Figure  4.  Effect of stern bearing stiffness on dynamic load of the bearing

    图  5  螺旋桨纵向激励下船体100 m处的辐射声压[16]

    Figure  5.  Radiation sound pressure (100 m apart from hull) of propeller longitudinal excitations[16]

    图  6  试验模型

    Figure  6.  Experimental model

    图  7  不同结构的试验模型

    Figure  7.  Experimental model for various structures

    图  8  艉轴承接触压力分析

    Figure  8.  Analysis of stern bearing contact force

    图  9  艉轴承摩擦振动分析

    Figure  9.  Friction-induced vibration analysis of stern bearing

    图  10  孔腔共振和辐射声机理示意图

    Figure  10.  Principle of sound radiation induced by hole resonance

    图  11  流体激励孔腔流—固耦合模态振动

    Figure  11.  Modal vibration of coupled fluid—structure by fluid force excitions

    图  12  螺旋桨纵向激励与船体振动映射关系

    Figure  12.  Relationship of propeller longidudinal excitations and hull vibration

    图  13  推力轴承减振元件与效果

    Figure  13.  Thrust bearing vibration suppressed effectiveness

    图  14  电磁减振器减振效果

    Figure  14.  Effectiveness of active electromagnetic vibration isolator

    表  1  桨—轴—船体系统声辐射特性

    Table  1.   Acoustic radiation characteristic of propeller-shaft-hull systems

  • [1] 何友声, 王国强.螺旋桨激振力[M].上海:上海交通大学出版社, 1987.
    [2] 刘登成, 洪方文, 张志荣, 等. 伴流中螺旋桨非定常力黏性数值方法研究[C]/第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议论文集. 西安: 中国力学学会, 中国造船工程学会, 2011: 148-155.

    LIU D C, HONG F W, ZHANG Z R, et al. Researchon viscous numerical method of propeller unsteadyforce in wake[C]/Proceedings of the 23th NationalConference on Hydrodynamics and 10th National Con-gress on Hydrodynamics. Xi'an: Chinese Society ofTheoretical and Applied Mechanics, the Chinese Soci-ety of Naval Architects and Marine Engineers, 2011:148-155(in Chinese).
    [3] 李家盛, 华宏星. 时空非均匀来流下流固耦合弹性螺旋桨纵向轴承力研究[R]. 上海: 上海交通大学, 2014.
    [4] 马超, 华宏星.正则化技术在状态空间载荷识别中的应用[J].振动、测试与诊断, 2014, 34(6):1154-1158. http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201406030.htm

    MA C, HUA H X. The state space force identificationtechnique based on an improved regularization method[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6):1154-1158(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201406030.htm
    [5] 马超. 基于正则化方法的动载荷识别技术研究及应用[D]. 上海: 上海交通大学, 2015. http://d.g.wanfangdata.com.cn/Thesis_D824445.aspx

    MA C. Dynamic force identification technique basedon the regularization method and application[D].Shanghai:Shanghai Jiao Tong University, 2015(inChinese). http://d.g.wanfangdata.com.cn/Thesis_D824445.aspx
    [6] 李栋梁. 轴系—艇体耦合系统振动声辐射分析与实验研究[D]. 上海: 上海交通大学, 2012.

    LI D L. Analysis and experiment on vibration andacoustic radiation of the shafting-hull coupled system[D]. Shanghai:Shanghai Jiao Tong University, 2012(in Chinese).
    [7] 张振果. 船舶推进轴系摩擦诱导振动机理研究[D]. 上海: 上海交通大学, 2014.

    ZHANG Z G. Investigation on friction-induced vibra-tion in propeller-shaft systems[D]. Shanghai:Shang-hai Jiao Tong University, 2014(in Chinese).
    [8] HARARI A, SANDMAN B E. Radiation and vibration-al properties of submerged stiffened cylindrical shells[J]. The Journal of the Acoustical Society of America, 1990, 88(4):1817-1830. doi: 10.1121/1.400203
    [9] BERGLUND J W, KLOSNER J M. Interaction of aring-reinforced shell and a fluid medium[J]. Journalof Applied Mechanics, 1968, 35(1):139-147. doi: 10.1115/1.3601127
    [10] 曾革委, 黄玉盈, 马运义.舱壁和环肋加强的无限长圆柱壳声弹耦合模型及其声特性[J].固体力学学报, 2002, 23(3):269-279. http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200203002.htm

    ZENG G W, HUANG Y Y, MA Y Y. Acoustic radia-tion from fluid-loaded infinite cylindrical shell stiff-ened by rings and bulkheads[J]. Chinese Journal ofSolid Mechanics, 2002, 23(3):269-279(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-GTLX200203002.htm
    [11] JUNGERM C. Dynamic behavior of reinforced cylin-drical shells in a vacuum and in a fluid[J]. Journal ofApplied Mechanics, 1954, 21:35-41.
    [12] 瞿叶高. 基于区域分解-谱边界元法的复合材料结构振动与声辐射问题研究[D]. 上海: 上海交通大学, 2014. http://d.g.wanfangdata.com.cn/Thesis_D828041.aspx

    QU Y G. Investigation on vibration and sound radia-tion problems of composite structures based on do-main decomposition and spectral boundary elementmethods[D]. Shanghai:Shanghai Jiao Tong Universi-ty, 2014(in Chinese). http://d.g.wanfangdata.com.cn/Thesis_D828041.aspx
    [13] QU Y G, CHEN Y, LONG X H, et al. A modifiedvariational approach for vibration analysis ofring-stiffened conical-cylindrical shell combinations[J]. European Journal of Mechanics-A/Solids, 2013, 37:200-215. doi: 10.1016/j.euromechsol.2012.06.006
    [14] QU Y G, CHEN Y, LONG X H, et al. Free andforced vibration analysis of uniform and stepped circu-lar cylindrical shells using a domain decomposition method[J]. Applied Acoustics, 2013, 74(3):425-439. doi: 10.1016/j.apacoust.2012.09.002
    [15] MERZ S, SEBASTIAN O, DYLEJKO P G, etal. De-velopment of coupled FE/BE models to investigate thestructural and acoustic responses of a submerged ves-sel[J]. Journal of Computational Acoustics, 2007, 15(1):23-47. doi: 10.1142/S0218396X07003196
    [16] 王剑. 基于子结构综合/FEM/BEM的桨—轴—艇振动声辐射特性研究报告[R]. 上海: 上海交通大学, 2013.
    [17] 李晨阳. 桨—轴—艇体耦合振动建模及演化机理研究报告[R]. 上海: 上海交通大学, 2014.
    [18] SIMPSON T, IBRAHIM R. Nonlinear friction-in-duced vibration in water-lubricated bearings[J]. Jour-nal of Vibration and Control, 1996, 2(1):87-113.
    [19] KRAUTER A I. Generation of squeal/chatter in wa-ter-lubricated elastomeric bearings[J]. Journal of Lu-brication Technology, 1981, 103(3):406-412. doi: 10.1115/1.3251695
    [20] 王家序, 刘静, 肖科, 等.水润滑橡胶轴承不同结构的摩擦噪声分析[J].机械传动, 2011, 35(9):12-14, 29. http://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201109003.htm

    WANG J X, LIU J, XIAO K, et al. Analysis of fric-tion noise of water lubricated bearing with differentstructure[J]. Journal of Mechanical Transmission, 2011, 35(9):12-14, 29(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201109003.htm
    [21] ZHANG Z G, ZHANG Z Y, HUANG X H, et al. Sta-bility and transient dynamics of a propeller – shaftsystem as induced by nonlinear friction acting on bear-ing-shaft contact interface[J]. Journal of Sound andVibration, 2014, 333(12):2608-2630. doi: 10.1016/j.jsv.2014.01.026
    [22] ZHANG Z G, CHEN F, ZHANG Z Y, et al. Analysisof friction-induced vibration in a propeller–shaft sys-tem with consideration of bearing– shaft friction[J].Proceedings of the Institution of Mechanical Engi-neers-Part C:Journal of Mechanical Engineering Sci-ence, 2014, 228(8):1311-1328. doi: 10.1177/0954406213508386
    [23] 袁国清. 水下开孔腔体流噪声机理研究[D]. 上海: 上海交通大学, 2015. http://d.g.wanfangdata.com.cn/Thesis_D824480.aspx

    YUAN G Q. Study on acoustic radiation mechanismsof flow-induced underwater open cavity[D]. Shang-hai:ShanghaiJiaoTongUniversity, 2015(inChinese). http://d.g.wanfangdata.com.cn/Thesis_D824480.aspx
    [24] 曹贻鹏, 张文平.使用动力吸振器降低轴系纵振引起的水下结构辐射噪声研究[J].哈尔滨工程大学学报, 2007, 28(7):747-751. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200707007.htm

    CAO Y P, ZHANG W P. Using dynamic absorbers toreduce underwater structural noise due to longitudinalvibration of shafting[J]. Journal of Harbin Engineer-ing University, 2007, 28(7):747-751. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200707007.htm
    [25] DYLEJKO P G, KESSISSOGLOU N J, TSO Y, et al.Optimisation of a resonance changer to minimise thevibration transmission in marine vessels[J]. Journalof Sound and Vibration, 2007, 300(1/2):101-116. http://cat.inist.fr/?aModele=afficheN&cpsidt=18561314
    [26] DYLEJKO P G. Optimum resonance changer for sub-merged vessel signature reduction[D]. Sydney, Aus-tralia:University of New South Wales, 2007. http://www.sciencedirect.com/science/article/pii/S0022460X06006778
    [27] 刘义军, 刘伟, 俞强. 碟簧式减振推力轴承纵向振动特性研究[C]/第11届全国转子动力学学术讨论会(ROTDYN2014) 论文集(下册). 大连: 中国振动工程学会, 2014: 255-258.
    [28] LEWIS D W, ALLAIRE P E, THOMAS P W. Activemagnetic control of oscillatory axial shaft vibrations inship shaft transmission systems part 1:system naturalfrequencies and laboratory scale model[J]. TribologyTransactions, 1989, 32(2):170-178.
    [29] LEWIS D W, HUMPHRIS R R, THOMAS P W. Ac-tive magnetic control of oscillatory axial shaft vibra-tions in ship shaft transmission systems part 2:con-trol analysis and response of experimental system[J].Tribology Transactions, 1989, 32(2):179-188. doi: 10.1080/10402008908981877
    [30] MERZ S. Passive and active control of the sound radi-ated by a submerged vessel due to propeller forces[D]. Sydney:University of New South Wales, 2010.
    [31] 饶柱石, 塔娜, 杨志荣, 等. 组合式磁流变弹性体船舶轴系纵振智能吸振器: ZL201210408699. 6[P]. 2013-01-16.
    [32] 胡芳. 推进轴系纵向振动主动控制方法研究[D]. 上海: 上海交通大学, 2015.

    HU F. Research on active control of the longitudinalvibration of propulsion shafting systems[D]. Shang-hai:Shanghai Jiao Tong University, 2015(in Chi-nese).
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  521
  • HTML全文浏览量:  146
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-29
  • 网络出版日期:  2017-07-27
  • 刊出日期:  2017-08-04

目录

    /

    返回文章
    返回