留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆炸波高精度数值计算程序开发及应用

徐维铮 吴卫国

徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用[J]. 中国舰船研究, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010
引用本文: 徐维铮, 吴卫国. 爆炸波高精度数值计算程序开发及应用[J]. 中国舰船研究, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010
XU Weizheng, WU Weiguo. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010
Citation: XU Weizheng, WU Weiguo. Development of in-house high-resolution hydrocode for assessment of blast waves and its application[J]. Chinese Journal of Ship Research, 2017, 12(3): 64-74. doi: 10.3969/j.issn.1673-3185.2017.03.010

爆炸波高精度数值计算程序开发及应用

doi: 10.3969/j.issn.1673-3185.2017.03.010
基金项目: 

国家部委基金资助项目;国家自然科学基金资助项目 51409202

详细信息
    作者简介:

    徐维铮, 男, 1991年生, 博士生。研究方向:爆炸波高精度数值计算方法及三维程序开发。E-mail:xuweizheng@whut.edu.cn

    通信作者:

    吴卫国(通信作者), 男, 1960年生, 教授, 博士生导师。研究方向:结构动力学。E-mail:mailjt@163.com

  • 中图分类号: U661.4

Development of in-house high-resolution hydrocode for assessment of blast waves and its application

知识共享许可协议
爆炸波高精度数值计算程序开发及应用徐维铮,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  当爆炸发生在约束空间内部,由于壁面的约束限制,爆炸冲击波的传播和演化特性将更加复杂,其对结构、内部设施及人员的损伤也更加严重。为了研究约束空间内部的爆炸特性,  方法  基于FORTRAN平台,采用三阶WENO有限差分格式,自主开发约束空间内部爆炸波高精度三维数值计算程序。利用Sod激波管、双爆轰波碰撞、空中爆炸等经典算例,验证所开发程序的可靠性。基于验证的程序,开展约束空间内部爆炸波数值计算,研究密闭空间、泄压空间及连通空间内部的爆炸波传播规律与爆炸载荷特性。  结果  研究表明,所开发的程序能较好地模拟约束空间内的爆炸过程。  结论  该开发工作可为后续研究复杂空间内部爆炸波传播路径、评估爆炸载荷以及合理设计抗爆结构奠定基础。
  • 图  Sod激波管算例计算的压力曲线

    Figure  1.  Pressure curves calculated by the case of the sod shock tube

    图  双爆轰波碰撞算例计算的压力曲线

    Figure  2.  Pressure curves calculated by the case of the interacting blast wave

    图  典型位置处的空中爆炸压力时间历程对比

    Figure  3.  Comparisons of pressure time history of blast in air at typical locations

    图  密闭空间及测点分布示意图

    Figure  4.  Schematic diagram of closed space and arrangement of measuring points

    图  密闭空间内部的爆炸初始条件及网格分布

    Figure  5.  Initial conditions and mesh distribution in closed space

    图  密闭空间内爆炸初期压力分布云图

    Figure  6.  Pressure distribution at early stage in closed space

    图  密闭空间内部的爆炸载荷时间历程曲线图

    Figure  7.  Time histories of blast load at the gauging points in closed space

    图  泄压空间及测点分布示意图

    Figure  8.  Schematic diagram of venting space and arrangement of measuring points

    图  泄压空间内爆炸初场

    Figure  9.  Initial conditions in venting space

    图  10  泄压空间内爆炸初期压力分布云图

    Figure  10.  Pressure distribution at early stage in venting space

    图  11  泄压空间内部的爆炸载荷时间历程曲线

    Figure  11.  Time histories of blast load at the gauging points in venting space

    图  12  泄压口位置示意图

    Figure  12.  Schematic diagram of venting hole locations in venting space

    图  13  不同泄压口位置测点3爆炸载荷时间历程曲线

    Figure  13.  Time histories of blast load at gauging point 3 for different positions of venting hole

    图  14  不同泄压口边长测点3爆炸载荷时间历程曲线

    Figure  14.  Time histories of blast load at point 3 for different sizes of venting holes

    图  15  连通空间及测点分布示意图

    Figure  15.  Schematic diagram of connected space and arrangement of measuring points

    图  16  连通空间内爆炸初始条件及网格分布

    Figure  16.  Initial condition and mesh distribution in connected space

    图  17  连通空间内爆炸初期压力分布云图

    Figure  17.  Pressure distribution at early stage in connected space

    图  18  左约束空间内爆炸壁面测点1,2爆炸载荷时间历程曲线

    Figure  18.  Time histories of blast load at gauging point 1 and 2 in the left confined space

    图  19  右约束空间内爆炸壁面测点爆炸载荷时间历程曲线

    Figure  19.  Time histories of blast load at gauging point 3, 4 in the right confined space

    图  20  连通空间内爆炸壁面测点爆炸载荷时间历程曲线

    Figure  20.  Time histories of blast load at the gauging points in connected space

  • [1] ESPARZA E D, BAKER W E, OLDHAM G A. Blast pressures inside and outside suppressive structures:ADA025504[R]. San Antonio, TX:Southwest Re-search Institute, 1975.
    [2] KEENAN W A, TANCRETO J E. Blast environment from fully and partially vented explosions in cubicles:ADA019026[R].[S.l.]:Department of the Army Pica-tinny Arsenal, 1975.
    [3] EDRI I, SAVIR Z, FELDGUN V R, et al. On blast pressure analysis due to a partially confined explosion:I. Experimental studies[J]. International Journal of Protective Structures, 2011, 2(1):1-20. doi: 10.1260/2041-4196.2.1.1
    [4] WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber[J]. Journal of Loss Pre-vention in the Process Industries, 2013, 26(4):737-750. doi: 10.1016/j.jlp.2013.02.001
    [5] 胡洋, 朱建芳, 朱锴.长方体单腔室空腔环境内爆炸效应的实验研究[J].爆炸与冲击, 2016, 36(3):340-346. doi: 10.11883/1001-1455(2016)03-0340-07

    HU Y, ZHU J F, ZHU K. Experimental study on ex-plosion effect in a closed single rectangular cavity[J]. Explosion and Shock Waves, 2016, 36(3):340-346(in Chinese). doi: 10.11883/1001-1455(2016)03-0340-07
    [6] 侯海量, 朱锡, 李伟, 等.舱内爆炸冲击载荷特性实验研究[J].船舶力学, 2010, 14(8):901-907. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008011.htm

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded in-side ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8):901-907(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX201008011.htm
    [7] 孔祥韶, 吴卫国, 李俊, 等.角隅结构对舱内爆炸载荷影响的实验研究[J].中国造船, 2012, 53(3):40-50. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201203006.htm

    KONG X S, WU W G, LI J, et al. Experimental re-search of influence of corner structure on blast loading under inner explosion[J]. Shipbuilding of China, 2012, 53(3):40-50(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201203006.htm
    [8] 侯海量, 朱锡, 梅志远.舱内爆炸载荷及舱室板架结构的失效模式分析[J].爆炸与冲击, 2007, 27(2):151-158. doi: 10.11883/1001-1455(2007)02-0151-08

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion[J]. Explosion and Shock Waves, 2007, 27(2):151-158(in Chinese). doi: 10.11883/1001-1455(2007)02-0151-08
    [9] 孔祥韶, 吴卫国, 李晓彬, 等.舰船舱室内部爆炸的数值模拟研究[J].中国舰船研究, 2009, 4(4):7-11. http://www.ship-research.com/CN/abstract/abstract551.shtml

    KONG X S, WU W G, LI X B, et al. Numerical simu-lation of cabin structure under inner explosion[J]. Chi-nese Journal of Ship Research, 2009, 4(4):7-11(in Chinese). http://www.ship-research.com/CN/abstract/abstract551.shtml
    [10] 丁阳, 陈晔, 师燕超.室内爆炸超压荷载简化模型[J].工程力学, 2015, 32(3):119-125, 133. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201503017.htm

    DING Y, CHEN Y, SHI Y C. Simplified model of overpressure loading caused by internal blast[J]. En-gineering Mechanics, 2015, 32(3):119-125, 133(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201503017.htm
    [11] 樊壮卿, 王伟力, 黄雪峰, 等.典型舱室内爆炸仿真分析[J].工程爆破, 2015, 21(3):13-17. http://www.cnki.com.cn/Article/CJFDTOTAL-GCBP201503004.htm

    FAN Z Q, WANG W L, HUANG X F, et al. Simula-tion analysis on typical cabin internal explosion[J]. Engineering Blasting, 2015, 21(3):13-17(in Chi-nese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCBP201503004.htm
    [12] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computation-al Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [13] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
    [14] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M]//QUARTERONI A. Advanced numerical approximation of nonlinear hyperbolic equations. Berlin Heidelberg:Springer, 1998:325-432.
    [15] SHU C W. High order weighted essentially nonoscilla-tory schemes for convection dominated problems[J]. Siam Review, 2009, 51(1):82-126. doi: 10.1137/070679065
    [16] HARTEN A, ENGQUIST B, OSHER S, et al. Uni-formly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2):231-303. doi: 10.1016/0021-9991(87)90031-3
    [17] 曹乐. 利用level set方法捕捉气、水界面的三维数值研究[D]. 合肥: 中国科学技术大学, 2009.

    CAO L. Three-dimensional computations on captur-ing of gas-water interface by level set method[D]. He-fei:University of Science and Technology of China, 2009(in Chinese).
    [18] 谢昌坦. 气-水可压缩流物质界面的R-M不稳定性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.

    XIE C T. The study on R-M instability of the material interface in gas-water compressible flow[D]. Har-bin:Harbin Engineering University, 2011(in Chi-nese).
    [19] SHU C W, OSHER S. Efficient implementation of es-sentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    [20] SOD G A. A survey of several finite difference meth-ods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
    [21] WOODWARD P, COLELLA P. The numerical simu-lation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1):115-173. doi: 10.1016/0021-9991(84)90142-6
    [22] ANDERSON C E Jr, BAKER W E, WAUTERS D K, et al. Quasi-static pressure, duration, and im-pulse for explosions (e.g. HE) in structures[J]. Inter-national Journal of Mechanical Sciences, 1983, 25(6):455-464. doi: 10.1016/0020-7403(83)90059-0
  • 2017-3-64_en.pdf
  • 加载中
图(20)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  78
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 网络出版日期:  2017-05-12
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回