留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃气轮机热障涂层高温腐蚀研究综述

刘永葆 刘建华 余又红 贺星 刘莉

刘永葆, 刘建华, 余又红, 贺星, 刘莉. 燃气轮机热障涂层高温腐蚀研究综述[J]. 中国舰船研究, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
引用本文: 刘永葆, 刘建华, 余又红, 贺星, 刘莉. 燃气轮机热障涂层高温腐蚀研究综述[J]. 中国舰船研究, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
LIU Yongbao, LIU Jianhua, YU Youhong, HE Xing, LIU Li. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
Citation: LIU Yongbao, LIU Jianhua, YU Youhong, HE Xing, LIU Li. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014

燃气轮机热障涂层高温腐蚀研究综述

doi: 10.3969/j.issn.1673-3185.2017.02.014
详细信息
    作者简介:

    刘永葆,男,1967年生,博士,教授。研究方向:燃气轮机监测、控制与故障诊断。E-mail:yongbaoliu@aliyun.com

    通讯作者:

    刘建华(通信作者),男,1983年生,博士生。研究方向:燃气轮机监测、控制与故障诊断。E-mail:ljh363418@sina.cn

  • 中图分类号: U668.3;TK47

Review of hot corrosion of thermal barrier coatings of gas turbine

  • 摘要: [ 目的 ]为了梳理燃气轮机热障涂层服役过程中的高温腐蚀问题,[ 方法 ]对燃气轮机热障涂层腐蚀类型和提高抗腐蚀性能的方法分别进行了归纳分析,并展望了提高热障涂层抗腐蚀性能的发展方向。[ 结果 ]经归纳分析,燃气轮机热障涂层腐蚀类型主要包括:陶瓷层高温相变、粘结层氧化、盐雾腐蚀、CMAS腐蚀以及燃料杂质腐蚀。提高热障涂层抗腐蚀性能的方法主要有:发展新的抗高温腐蚀涂层材料、进行涂层表面防腐处理、改变涂层系统结构以及提高燃气轮机辅助清洁功能。[ 结论 ]未来开发性能优异的新材料仍是提高热障涂层抗腐蚀性能的主要方向,而改进涂层结构设计、材料纳米化对提升热障涂层抗腐蚀性能有很大潜力。随着陶瓷基复合材料的发展,对涂层的高温腐蚀研究将逐步从热障涂层转向环境障涂层(EBC)。
  • [1] MILLER R A.History of thermal barrier coatings for gas turbine engines:NASA/TM-2009-215459[R]. Cleveland,Ohio:Glenn Research Center,2009.
    [2] PADTURE N P,GELL M,JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science,2002,296(5566):280-284.
    [3] 郭洪波,宫声凯,徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报,2014,35(10):2722-2732. GUO H B,GONG S K,XU H B. Research progress on new high/ultra-high temperature thermal barrier coat-ings and processing technologies[J]. Acta Aeronauti-caet Astronautica Sinica,2014,35(10):2722-2732(in Chinese).
    [4] STECURA S. Effects of compositional changes on the performance of a thermal barrier coating system:NASA TM-78976[R]. Cleveland, Ohio:Lewis Research Center,1979.
    [5] KITAZAWA R,TANAKA M,KAGAWA Y,et al. Damage evolution of TBC system under in-phase ther-mo-mechanical tests[J]. Materials Science and Engi-neering:B,2010,173(1/2/3):130-134.
    [6] KRÄMER S,YANG J,LEVI C G,et al. Thermochem-ical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits[J]. Journal of the American Ceramic Society,2006,89(10):3167-3175.
    [7] MILLER R A,GARLICK R G,SMIALEK J L. Phase distributions in plasma-sprayed zirconia-yttria[J]. American Ceramic Society Bulletin,1983,62(12):1355-1358.
    [8] MILLER R A,SMIALEK J L,GARLICK R G. Phase stability in plasma-sprayed,partially stabilized zirco-nia-yttria[M]//HEUER AH,HOBBSLW. Advances in ceramics,Vol. 3:science and technology of zirconia. Columbus, OH:American Ceramic Society, 1981:241-252.
    [9] EVANS AG,MUMM D R,HUTCHINSON J W,et al. Mechanisms controlling the durability of thermal barri-er coatings[J]. Progress in Materials Science,2001, 46(5):505-553.
    [10] JONES R L,GADOMSKI S T. The hot corrosion of CoCrAlY turbine blade coatings by Na2SO4 and vapor-ous NaCl[J]. Journal of the Electrochemical Society, 1977,124(10):1641-1648.
    [11] 项民,骆军华,张琦. 盐雾腐蚀对热障涂层高温循环氧化性能的影响[J]. 航空学报,2006,27(1):138-141. XIANG M,LUO J H,ZHANG Q. Influence of salt spray corrosion on high-temperature cyclic oxidation behavior of thermal barrier coatings[J]. Acta Aero-nauticaet Astronautica Sinica, 2006, 27(1):138-141(in Chinese).
    [12] EVANS A G,FLECK N A,FAULHABER S,et al. Scalinglaws governing the erosion andimpact resis-tance of thermal barrier coatings[J]. Wear,2006, 260(7/8):886-894.
    [13] DREXLER J M,SHINODA K,ORTIZ AL,et al. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits[J]. Acta Materialia,2010,58(20):6835-6844.
    [14] STOTT F H,DE WET D J,TAYLOR R. Degradation of thermal-barrier coatings at very high temperatures[J]. MRS Bulletin,1994,19(10):46-49.
    [15] PENG H,WANG L,GUO L,et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits[J]. Progress in Natural Science:Materials International, 2012,22(5):461-467.
    [16] KRAUSE A R,GARCES H F,DWIVEDI G,et al. Calcia-magnesia-alumino-silicate (CMAS) -in-duced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings[J]. Acta Materialia,2016,105:355-366.
    [17] VIDAL-SETIF M H,CHELLAH N,RIO C,et al. Calcium-magnesium-alumino-silicate(CMAS) deg-radation of EB-PVD thermal barrier coatings:charac-terization of CMAS damage on ex-service high pres-sure blade TBCs[J]. Surface and Coatings Technolo-gy,2012,208:39-45.
    [18] 张小锋,周克崧,宋进兵,等. 等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J]. 无机材料学报,2015,30(3):287-293. ZHANG X F,ZHOU K S,SONG J B,et al. Deposi-tion and CMAS corrosion mechanism of 7YSZ thermal barriercoatings prepared by plasma spray-physical va-por deposition[J]. Journal of Inorganic Materials, 2015,30(3):287-293(in Chinese).
    [19] JONES R L. Some aspects of the hot corrosion of ther-mal barrier coatings[J]. Journal of Thermal Spray Technology,1997,6(1):77-84.
    [20] BRATTON R J,LAU S K,ANDERSSON C A,et al. Studies of thermal barrier coatings for heat engines[C]//Proceedings of the 2nd Conference on Advanced Materials for Alternative-Fuel-Capable Heat En-gines. Palo Alto,America:Electric Power Research Institute,1982:6-101.
    [21] KVEMES I,SOLBERG J K,LILLERUD K P. Ceram-ic coatings on diesel engine components[C]//Proceed-ings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat Engines. US:U. S. Dept. of Energy,CONF-790749,1979:233-257.
    [22] HAMILTON J C,NAGELBERG A S. In Situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate[J]. Journal of the Ameri-can Ceramic Society,1984,67(10):686-690.
    [23] BARKALOW R H,PETTIT E S. Mechanisms of hot corrosion attack of ceramic coating materials[C]//Pro-ceedings of the 1st Conference onAdvanced Materials for Alternative Fuel Capable Directly Fired Heat En-gines,CONF-790749. US:U.S. Dept. of Energy, 1979:704-714.
    [24] SINGHAL S C,BRATTON R J. Stability of a ZrO2(Y2O3) thermal barrier coating in turbine fuel with contaminants[J]. Journal of Engineering for Power, 1980,102(4):770-775.
    [25] JONES R L. The development of hot-corrosion-resis-tant zirconia thermal barrier coatings[J]. Materials at High Temperatures,1991,9(4):228-236.
    [26] MCKEE D W,LUTHRA K L,SIEMERS P,et al. Resistance of thermal barrier ceramic coatings to hot salt corrosion[C]//Proceedings of the 1st Conferen-ceon Advanced Materials for Alternative Fuel Capa-ble Directly Fired Heat Engines. US:U.S. Dept. of En-ergy,1979:258-269.
    [27] VASSEN R,CAO X Q,TIETZ F,et al. Zirconates as new materials for thermal barrier coatings[J]. Jour-nal of the American Ceramic Society,1999,83(8):2023-2028.
    [28] YUGESWARAN S,KOBAYASHI A,ANANTHA-PADMANABHAN P V. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barri-er coatings[J]. Journal of the European Ceramic Soci-ety,2012,32(4):823-834.
    [29] YUGESWARAN S,KOBAYASHI A,ANANTHA-PADMANABHAN P V. Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings[J]. Materials Science and Engineer-ing:B,2012,177(7):536-542.
    [30] XIE X Y,GUO H B,GONG S K,et al. Hot corro-sion behavior of double-ceramic-laye LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese Journal of Aeronautics,2012,25(1):137-142.
    [31] HABIBI M H,WANG L,LIANG J D,et al. An in-vestigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4+ V2O5 salt at 1100℃[J]. Corrosion Science, 2013,75:409-414.
    [32] HABIBI M H,YANG S Z,GUO S M. Phase stability and hot corrosion behavior of ZrO2-Ta2O5 compound in Na2SO4-V2O5 mixtures at elevated temperatures[J]. Ceramics International,2014,40(3):4077-4083.
    [33] CHEN X L,ZHAO Y,GU L J,et al. Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl11O19 com-posite coatings in molten sulfate-vanadate salt[J]. Corrosion Science,2011,53(6):2335-2343.
    [34] JONES R L. Scandia-stabilized zirconia for resis-tance to molten vanadate-sulfate corrosion[J]. Sur-face and Coatings Technology,1989,39/40:89-96.
    [35] STECURA S. New ZrO2-Yb2O3 plasma-sprayed coat-ings for thermal barrier applications[J]. Thin Solid Films,1987,150(1):15-40.
    [36] JONES R L,MESS D. India as a hot corrosion-resis-tant stabilizer for zirconia[J]. Journal of the Ameri-can Ceramic Society,1992,75(7):1818-1821.
    [37] PARKA S Y,KIM J H,KIM M C,et al. Microscopic observation of degradation behavior in yttriaand ceria stabilized zirconia thermal barrier coatings under hot corrosion[J]. Surface and Coatings Technology, 2005,190(2/3):357-365.
    [38] KHOR K A,YANG J. Plasma sprayed ZrO2-Sm2O3 coatings:lattice parameters,tetragonality(c/a) and transformability of tetragonal zirconia phase in plas-ma-sprayed ZrO2-Er2O3 coatings[J]. Journal of Ma-terials Science Letters,1997,16(12):1002-1004.
    [39] SURESH A,MAYO M J,POTER W D. Thermody-namics of the tetragonal-to-monoclinic phase trans-formation in fine and nanocrystallineyttria-stabilized zirconia powders[J]. Journal of Materials Research, 2003,18(12):2912-2921.
    [40] GARVIE R C,GOSS M F. Intrinsic size dependence of the phase transformation temperature in zirconia microcrystals[J]. Journal of Materials Science, 1986,21(4):1253-1257.
    [41] GHASEMI R,SHOJA-RAZAVI R,MOZAFARINIA R,et al. Comparison of microstructure and mechani-cal properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International,2013,39(8):8805-8813.
    [42] JAMALI H,MOZAFARINIA R,RAZAVI R S,et al. Fabrication and evaluation of plasma-sprayed nano-structured and conventional YSZ thermal barrier coat-ings[J]. Current Nanoscience, 2012, 8(3):402-409.
    [43] LIMA R S,MARPLE B R. Toward highly sinter-ing-resistant nanostructured ZrO2-7 wt.% Y2O3 coat-ings for TBC applications by employing differential sintering[J]. Journal of Thermal Spray Technology, 2008,17(5/6):846-852.
    [44] LIMA R S,MARPLE B R. Nanostructured YSZ ther-mal barrier coatings engineered to counteract sinter-ing effects[J]. Materials Science and Engineering:A,2008,485(1/2):182-193.
    [45] WU J,GUO H B,ZHOU L,et al. Microstructure and thermal properties of plasma sprayed thermal bar-rier coatings from nanostructured YSZ[J]. Journal of Thermal Spray Technology,2010,19(6):1186-1194.
    [46] JAMALI H,MOZAFARINIA R,SHOJA-RAZAVI R,et al. Comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vana-dium pentoxide and sodium sulfate[J]. Journal of the European Ceramic Society,2014,34(2):485-492.
    [47] TSAI P C,HSU C S. High temperature corrosion re-sistance and microstructural evaluation of la-ser-glazed plasma-sprayed zirconia/MCrAlY thermal barrier coatings[J]. Surface and Coatings Technolo-gy,2004,183(1):29-34.
    [48] TSAI P C,LEE J H,HSU C S. Hot corrosion behav-ior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5[J]. Surface and Coatings Technology,2007, 201(9/10/11):5143-5147.
    [49] BATISTA C,PORTINHA A,RIBEIRO R M,et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts[J]. Surface and Coatings Technology, 2006,200(24):6783-6791.
    [50] YAN S,SHANG Y J,XU X F,et al. Improving an-ti-corrosion property of thermal barrier coatings by in-tense pulsed ion beam irradiation[J]. Nuclear Instru-ments and Methods in Physics Research Section B, 2012,272:450-453.
    [51] CHEN Z,WU N Q,SINGH J,et al. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate-vanadate salt[J]. Thin Solid Films,2003,443(1/2):46-52.
    [52] AFRASIABI A,SAREMI M,KOBAYASHI A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ,YSZ + Al2O3 and YSZ/Al2O3[J]. Materials Science and Engineer-ing:A,2008,478(1/2):264-269.
    [53] ZHONG X H,WANG Y M,XU Z H,et al. Hot-cor-rosion behaviors of overlay-clad yttria-stabilized zir-conia coatings in contact with vanadate-sulfate salts[J]. Journal of the European Ceramic Society,2010, 30(6):1401-1408.
    [54] NEJATI M, RAHIMIPOUR M R, MOBASHER-POUR I. Evaluation of hot corrosion behavior of CSZ, CSZ/microAl2O3 and CSZ/nanoAl2O3 plasma sprayed thermal barrier coatings[Z]. Ceramics International, 2014,40(3):4579-4590.
    [55] KNUUTTILA J,SORSA P,MÄNTYLÄ T,et al. Sealing of thermal spray coatings by impregnation[J]. Journal of Thermal Spray Technology,1999,8(2):249-257.
    [56] TROCZYNSKI T,YANG Q,JOHN G. Post-deposi-tion treatment of zirconia thermal barrier coatings us-ing Sol-Gel alumina[J]. Journal of Thermal Spray Technology,1999,8(2):229-234.
    [57] 曹雪强. 热障涂层材料[M]. 北京:科学出版社, 2007:11. CAO X Q. Thermal barrier coating materials[M]. Bei-jing:Science Press,2007:11(in Chinese).
    [58] MÜLLER J,NEUSCHÜTZ D. Efficiency of α -alumi-na as diffusion barrier between bond coat and bulk material of gas turbine blades[J]. Vacuum,2003,71(1/2):247-251.
    [59] KURANISHI T,HABAZAKI H,KONNO H. Oxida-tion-resistant multilayer coatings using an anodic alu-mina layer as a diffusion barrier on γ -TiAl substrates[J]. Surface and Coatings Technology,2005,200(7):2438-2444.
    [60] 张晓囡,张华芳,李庆芬,等. 热障涂层界面扩散阻挡层研究进展[J]. 材料导报,2008,22(4):14-17. ZHANG X N,ZHANG H F,LI Q F,et al. Research development of interface diffusion barriers in thermal barrier coatings[J]. Materials Review, 2008, 22(4):14-17(in Chinese).
    [61] 蔡妍,易军,陆峰,等. 热障涂层金属元素扩散阻挡层研究进展[J]. 材料工程,2011(9):92-96. CAI Y,YI J,LU F,et al. Development in research on metal diffusion barrier of TBCs[J]. Journal of Ma-terials Engineering,2011(9):92-96(in Chinese).
    [62] 蔡妍,李建平,陆峰,等. 电弧离子镀TiC扩散障结构及抗高温氧化性能研究[J]. 真空,2010,47(5):5-8. CAI Y,LI J P,LU F,et al. Structure and antioxida-tion behavior of TiC diffusion barrier prepared by arc ion plating[J]. Vacuum,2010,47(5):5-8(in Chi-nese).
    [63] SU Y F. Protective control of the metal-ceramic inter-face behavior of thermal barrier coatings using an arti-ficial α -Al2O3layer[D]. USA:Stevens Institute of Technology,2003.
    [64] TAKAHASHI M,ITOH Y,MIYAZAKIA M. Ther-mal barrier coatings design for gas turbine[C]//OHM-ORI A. Proceedings of 14th International Thermal Spraying. Kobe Japan:High Temperature Society of Japan,1995:83-88.
    [65] KAWASAKI A,WATANABE R. Cyclic thermal frac-ture behavior and spallation life of PSZ/NiCrAlY func-tionally graded thermal barrier coatings[J]. Materials Science Forum,1999,308/311:402-409.
    [66] ZHU D M,MILLER R A. Thermal and environmental barrier coatings for advanced propulsion engine sys-tems:NASA/TM-2004-213129[R]. Cleveland, Ohio:Lewis Research Center,2004.
    [67] 周益春,刘奇星,杨丽,等. 热障涂层的破坏机理与寿命预测[J]. 固体力学学报,2010,31(5):504-531. ZHOU Y C,LIU Q X,YANG L,et al. Failure mech-anisms and life prediction of thermal barrier coatings[J]. Chinese Journal of Solid Mechanics,2010,31(5):504-531(in Chinese).
    [68] RAMASAMY S,TEWARIS N,LEEK N,et al. EBC development for hot-pressed Y2O3/Al2O3 doped silicon nitride ceramics[J]. Materials Science and Engineer-ing:A,2010,527(21/22):5492-5498.
  • [1] 冯寒亮, 刘逸飞, 刘峰.  美国海军全舰电磁脉冲模拟器发展综述 . 中国舰船研究, 2020, 15(5): 69-78. doi: 10.19693/j.issn.1673-3185.01722
    [2] 孙一方, 宗智, 姜宜辰.  船舶在波浪上纵向运动与控制研究综述 . 中国舰船研究, 2020, 15(1): 1-12,47. doi: 10.19693/j.issn.1673-3185.01751
    [3] 刘相知, 崔维成.  潜空两栖航行器的综述与分析 . 中国舰船研究, 2019, 14(Supp 2): 1-14. doi: 10.19693/j.issn.1673-3185.01901
    [4] 郑荣, 宋涛, 孙庆刚, 国婧倩.  自主式水下机器人水下对接技术综述 . 中国舰船研究, 2018, 13(6): 43-49,65. doi: 10.19693/j.issn.1673-3185.01182
    [5] 李德聪, 段宏, 吴国民, 周心桃, 杨雄辉.  船内爆炸载荷特性及对舰船结构毁伤研究综述 . 中国舰船研究, 2018, 13(1): 7-16. doi: 10.3969/j.issn.1673-3185.2018.01.002
    [6] 杨建, 朱炜, 何文强, 王艳国, 邹春平, 牛茂升.  某燃气轮机舷侧进气流场数值仿真 . 中国舰船研究, 2018, 13(Supp 1): 126-134. doi: 10.19693/j.issn.1673-3185.01217
    [7] 潘镜芙, 董晓明.  水面舰艇作战系统的回顾和展望 . 中国舰船研究, 2016, 11(1): 8-12. doi: 10.3969/j.issn.1673-3185.2016.01.002
    [8] 杨建明, 张新宇, 刘朝骏.  高强度钢在潜艇应用中的若干重要问题综述 . 中国舰船研究, 2016, 11(1): 27-35. doi: 10.3969/j.issn.1673-3185.2016.01.005
    [9] 姚熊亮, 刘文韬, 张阿漫, 刘云龙.  水下爆炸气泡及其对结构毁伤研究综述 . 中国舰船研究, 2016, 11(1): 36-45. doi: 10.3969/j.issn.1673-3185.2016.01.006
    [10] 刘培国, 刘晨曦, 谭剑锋, 董雁飞, 易波.  强电磁防护技术研究进展 . 中国舰船研究, 2015, 10(2): 2-6. doi: 10.3969/j.issn.1673-3185.2015.02.002
    [11] 李茂华, 龚杰.  三维PIV应用于船舶精细流场测试研究进展 . 中国舰船研究, 2015, 10(1): 58-67. doi: 10.3969/j.issn.1673-3185.2015.01.009
    [12] 郑生全, 邓峰, 王冬冬, 侯冬云, 刘培国.  电子设备和系统射频通道高功率微波电磁脉冲场—路综合防护方法综述 . 中国舰船研究, 2015, 10(2): 7-14. doi: 10.3969/j.issn.1673-3185.2015.02.003
    [13] 张米斯, 高新华, 宁晖, 王奎升.  热喷涂金属涂层与舰船应用前景 . 中国舰船研究, 2015, 10(6): 120-125. doi: 10.3969/j.issn.1673-3185.2015.06.018
    [14] 王虎, 何书韬, 周心桃, 凌昊.  舰用钢质夹层结构连接节点研究现状综述 . 中国舰船研究, 2014, 9(3): 49-56. doi: 10.3969/j.issn.1673-3185.2014.03.007
    [15] 徐鹏, 曹云鹏, 欧惠宇, 李淑英.  船用三轴燃气轮机气路故障建模与聚类诊断技术 . 中国舰船研究, 2014, 9(3): 88-92. doi: 10.3969/j.issn.1673-3185.2014.03.013
    [16] 郑春兵.  船用燃气轮机回热器设计的数值研究 . 中国舰船研究, 2012, 7(5): 79-82. doi: 10.3969/j.issn.1673-3185.2012.05.014
    [17] 牟金磊, 朱锡, 黄晓明.  水下爆炸载荷作用下舰船结构响应研究综述 . 中国舰船研究, 2011, 6(2): 1-8. doi: 10.3969/j.issn.1673-3185.2011.02.001
    [18] 刘永葆, 房友龙.  燃气轮机高压涡轮叶顶间隙变化规律的有限元分析 . 中国舰船研究, 2011, 6(6): 78-82. doi: 10.3969/j.issn.1673-3185.2011.06.016
    [19] 姚熊亮, 杨树涛, 张阿漫.  爆炸载荷作用下舰船板架的变形与断裂研究综述 . 中国舰船研究, 2009, 4(1): 1-7,12. doi: 10.3969/j.issn.1673-3185.2009.01.001
    [20] 陈文战, 岂兴明, 华志刚.  燃气轮机吊装轨道系统结构强度分析研究 . 中国舰船研究, 2009, 4(06): 26-29,37. doi: 10.3969/j.issn.1673-3185.2009.06.006
  • 加载中
计量
  • 文章访问数:  234
  • HTML全文浏览量:  5
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-25
  • 刊出日期:  2017-03-25

燃气轮机热障涂层高温腐蚀研究综述

doi: 10.3969/j.issn.1673-3185.2017.02.014
    作者简介:

    刘永葆,男,1967年生,博士,教授。研究方向:燃气轮机监测、控制与故障诊断。E-mail:yongbaoliu@aliyun.com

    通讯作者: 刘建华(通信作者),男,1983年生,博士生。研究方向:燃气轮机监测、控制与故障诊断。E-mail:ljh363418@sina.cn
  • 中图分类号: U668.3;TK47

摘要: [ 目的 ]为了梳理燃气轮机热障涂层服役过程中的高温腐蚀问题,[ 方法 ]对燃气轮机热障涂层腐蚀类型和提高抗腐蚀性能的方法分别进行了归纳分析,并展望了提高热障涂层抗腐蚀性能的发展方向。[ 结果 ]经归纳分析,燃气轮机热障涂层腐蚀类型主要包括:陶瓷层高温相变、粘结层氧化、盐雾腐蚀、CMAS腐蚀以及燃料杂质腐蚀。提高热障涂层抗腐蚀性能的方法主要有:发展新的抗高温腐蚀涂层材料、进行涂层表面防腐处理、改变涂层系统结构以及提高燃气轮机辅助清洁功能。[ 结论 ]未来开发性能优异的新材料仍是提高热障涂层抗腐蚀性能的主要方向,而改进涂层结构设计、材料纳米化对提升热障涂层抗腐蚀性能有很大潜力。随着陶瓷基复合材料的发展,对涂层的高温腐蚀研究将逐步从热障涂层转向环境障涂层(EBC)。

English Abstract

刘永葆, 刘建华, 余又红, 贺星, 刘莉. 燃气轮机热障涂层高温腐蚀研究综述[J]. 中国舰船研究, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
引用本文: 刘永葆, 刘建华, 余又红, 贺星, 刘莉. 燃气轮机热障涂层高温腐蚀研究综述[J]. 中国舰船研究, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
LIU Yongbao, LIU Jianhua, YU Youhong, HE Xing, LIU Li. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
Citation: LIU Yongbao, LIU Jianhua, YU Youhong, HE Xing, LIU Li. Review of hot corrosion of thermal barrier coatings of gas turbine[J]. Chinese Journal of Ship Research, 2017, 12(2): 107-115. doi: 10.3969/j.issn.1673-3185.2017.02.014
参考文献 (68)

目录

    /

    返回文章
    返回