Influence of waterjet duct on ship's resistance performance
-
摘要:
目的 喷水推进船舶的阻力性能与常规船舶有着很大的不同,喷水推进器流道的存在会改变船舶尾部流场,对船舶阻力性能有着很大的影响。 方法 以FA1型三体船为计算模型,利用CFD软件STAR-CCM+,将喷水推进器流道看作附体,对比研究安装不同进流角喷水推进器流道前后船舶尾部流场变化。通过对比流道表面压力分布、船体流线的变化,阐述船舶阻力以及阻力成分产生变化的机理。 结果 结果表明:STAR-CCM+可以实现对于船舶阻力性能的预报;喷水推进器进水流道的安装会增大船舶阻力,主要为压差阻力的增大。 结论 对进水流道倾角的优化可以增进喷水推进船舶的阻力性能。 Abstract: The waterjet duct can change the flow field of the stern, and it has a great influence on the resistance performance of the ship. The resistance performance of marine vehicles driven by waterjets is very different from that of conventional ships, so it is meaningful to study the changes to the resistance performance of the ship. We used the CFD software STAR-CCM +, treated the waterjet duct as the appendage and compared the change of the flow field in the stern after the installation of the waterjet duct at different angles. We described the change mechanism of the ship's resistance and resistance components by comparing the change in pressure distribution of the waterjet duct's surface and the flow field around the hull. The results show that STAR-CCM+ can realize the prediction of ship resistance performance because the simulation results achieved perfect accuracy, and it is gradually becoming the development direction of the resistance performance prediction of marine vehicles driven by waterjets. The installation of the waterjet duct will increase the resistance of the ship, which is mainly due to the increase of pressure resistance. In addition, the resistance performance of a ship driven by waterjets can be improved by the optimization of the waterjet duct's angle.-
Key words:
- waterjets /
- ship resistance /
- numerical simulation /
- duct
-
表 1 模型的基本参数
Table 1. Basic parameters of the calculation model
Main parameters Numerical values Total length of main body/m 3.501 Total length of demibody/m 0.988 Moulded depth/m 0.279 Draft/m 0.182 Total breadth moulded /m 0.791 表 2 阻力计算值与试验值对比
Table 2. Comparison of resistance and experimental values
Froude number Calculated values
of resistance/NExperimental values
of resistance/NError values/% 0.103 1.821 1.886 -3.446 0.250 10.597 11.439 -7.361 0.294 14.934 16.150 -7.529 0.397 24.981 26.367 -5.257 0.441 30.171 32.078 -5.945 0.485 35.045 38.599 -9.207 表 3 各阻力成分对比
Table 3. Comparison of each resistance component
Froude number Shear resistance/N Pressure
resistance/NProportion of shear
resistance/%0.103 1.210 0.610 66.4 0.250 5.773 4.823 54.5 0.294 7.721 7.213 51.7 0.397 13.461 11.519 53.9 0.441 16.136 14.034 53.5 0.485 18.855 16.190 53.8 表 4 各工况下阻力值
Table 4. Resistance values under different working conditions
Froude number Hull Total resistance/N Shear resistance/N Pressure resistance/N 0.103 Bare hull 1.821 1.210 0.610 25° 1.899 1.222 0.678 30° 1.897 1.220 0.677 40° 1.889 1.214 0.675 0.250 Bare hull 10.597 5.773 4.823 25° 11.073 5.853 5.220 30° 10.954 5.776 5.178 40° 10.978 5.831 5.147 0.294 Bare hull 14.934 7.721 7.213 25° 15.072 7.854 7.848 30° 15.818 7.833 7.985 40° 15.557 7.804 7.753 0.397 Bare hull 24.981 13.461 11.519 25° 26.631 13.696 12.935 30° 26.903 13.672 13.231 40° 27.132 13.629 13.503 0.441 Bare hull 30.171 16.136 14.034 25° 32.639 16.421 16.218 30° 32.859 16.210 16.649 40° 33.302 16.346 16.957 0.485 Bare hull 35.045 18.855 16.191 25° 38.535 19.167 19.368 30° 38.921 19.126 19.794 40° 39.317 19.081 20.236 -
[1] 李鑫. 高速艇喷水推进器流场特性数值模拟[D]. 镇江: 江苏科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10289-1014034585.htm [2] 刘柱, 孟凡立.船舶喷水推进技术发展[J].船海技术, 2004(4):42-44. http://www.cnki.com.cn/Article/CJFDTOTAL-HHJS200404024.htmLIU Z, MENG F L. The development on technology of water jet propulsion for ship[J]. Marine Technology, 2004(4):42-44(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HHJS200404024.htm [3] 王立祥.船舶喷水推进[J].船舶, 1997(3):45-52. [4] 孙村楼, 王永生. CFD在船舶喷水推进器设计与性能分析中的应用[J].哈尔滨工程大学学报, 2008, 29(5):444-448. http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200805001.htmSUN C L, WANG Y S. Computational fluid dynamics for marine waterjet design and performance analysis[J]. Journal of Harbin Engineering University, 2008, 29(5):444-448(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200805001.htm [5] VAN TERWISGA T. Waterjet-hull interaction[D]. Delft:Delft University of Technology, 1996. [6] BRIZZOLARA S, BRUZZONE D. Hydrodynamic opti-misation of high-speed trimaran hull forms[C]//Pro-ceedings of the 18th International Offshore and Polar Engineering Conference. Vancouver, BC, Canada:ISOPE, 2008:547-554. [7] CARR B. Investigation of trimaran interference effects[D]. Glen Cove:Webb Institute, 2007. [8] MIZINE I, KARAFIATH G, QUEUTEY P, et al. In-terference phenomenon in design of trimaran ship[C]//Proceedings of the 10th International Conference on Fast Sea Transportation-FAST. Athens, Greece:Pow-er and Rotary Systems, 2009. [9] 高双. 喷水推进船舶的航向/航速控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2008. [10] 葛宜龙. 采用喷水推进器的三体船尾部形状与阻力性能关系研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. [11] 于大伟. 喷水推进三体船流场及阻力预报[D]. 哈尔滨: 哈尔滨工程大学, 2011. [12] 丁江明, 王永生.喷水推进器进水流道参数化设计与应用[J].上海交通大学学报, 2010, 44(10):1423-1428. http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201010023.htmDING J M, WANG Y S. Parametric design and appli-cation of inlet duct of marine waterjet[J]. Journal of Shanghai Jiaotong University, 2010, 44(10):1423-1428(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201010023.htm [13] 刘承江, 王永生, 张志宏.喷水推进器数值模拟所需流场控制体的研究[J].水动力学研究与进展, 2008, 23(5):592-595. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htmLIU C J, WANG Y S, ZHANG Z H. Study on flow control volume in numerical simulation of waterjet propulsor[J]. Chinese Journal of Hydrodynamics, 2008, 23(5):592-595(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200805018.htm [14] 毛筱菲, 汤苏林.边界层对喷水推进器进水管内流场影响[J].水动力学研究与进展, 2005, 20(4):479-485. http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200504010.htmMAO X F, TANG S L. Numerical study of boundary layer effects on waterjet intakes flow and pressure dis-tribution[J]. Journal of Hydrodynamics, 2005, 20(4):479-485(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200504010.htm [15] 张志荣, 赵峰, 李百奇. k-ω湍流模式在船舶粘性流场计算中的应用[J].船舶力学, 2003, 7(1):33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200301005.htmZHANG Z R, ZHAO F, LI B Q. Application of k-ω turbulence model to computation of viscous flow field around a ship[J]. Journal of Ship Mechanics, 2003, 7(1):33-37(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200301005.htm -
2017-2-22_en.pdf
-