留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极地航行船舶及海洋平台防冰和除冰技术研究进展

谢强 陈海龙 章继峰

谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
引用本文: 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
Citation: XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008

极地航行船舶及海洋平台防冰和除冰技术研究进展

doi: 10.3969/j.issn.1673-3185.2017.01.008
基金项目: 国家自然科学基金资助项目(51379048)
详细信息
    作者简介:

    谢强,男,1990年生,博士生。研究方向:极地船舶与装备防冰和除冰技术。E-mail:455924666@qq.com;陈海龙,男,1980年生,博士。研究方向:极地大科学及项目管理

    通讯作者:

    章继峰(通信作者),男,1976年生,博士,教授,博士生导师。研究方向:极地船舶与装备防冰和除冰技术。E-mail:jfzhang@hrbeu.edu

  • 中图分类号: U674.21

Research progress of anti-icing/deicing technologies for polar ships and offshore platforms

  • 摘要: 极地具有气候环境极端恶劣、海气交换强烈、湿度很大等特点,在此航行(或冰区航行)的船舶和海洋平台结构表面极易形成覆冰,它不仅影响设备操作,更直接威胁到船舶和海洋平台的安全。对国内外极地航行船舶及海洋平台防冰和除冰技术的现状进行综述。首先,介绍覆冰对极地航行船舶及海洋平台不同部位的影响和危害程度。然后,归纳和分析国内外现有防冰和除冰方法与技术,包括电加热、红外线、超声导波等主动除冰方法,以及超疏水涂层、牺牲性涂层、水润滑涂层以及低交联度界面滑移涂层等被动除冰方法。最后,总结现有防冰和除冰技术在极地航行船舶及海洋平台上的适用性及优缺点,为极地航行船舶及海洋平台的防除冰设计提供参考。
  • [1] BIRD K J,CHARPENTIER R R,GAUTIER D L,et al. Circum-arctic resource appraisal:estimates of un-discovered oil and gas north of the arctic circle[R]. Reston,VA:The Uninted States,Geological Survey (USGS)National Center,2008.
    [2] GAUTIER D L,BIRD K J,CHARPENTIER R R,et al. Assessment of undiscovered oil and gas in the arctic[J]. Science,2009,324(5931):1175-1179.
    [3] 朱英富,刘祖源,解德,等. 极地船舶核心关键基础技术现状及我国发展对策[J]. 中国科学基金,2015(3):178-186. ZHU Y F,LIU Z Y,XIE D,et al. Advancements of the core fundamental technologies and strategies of Chi-na regarding the research and development on polar ships[J]. Bulletin of National Natural Science Founda-tion of China,2015(3):178-186(in Chinese).
    [4] JONES K F,ANDREAS E L. Sea spray icing of drill-ing and production platforms:ERDC/CRREL TR-09-3[R]. Hanover,NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory,2009.
    [5] HORJEN I. Ice accretions on ships and marine struc-tures[R]. Trondheim,Norway:The River and Har-bour Laboratory,1989.
    [6] BATTISTI L,FEDRIZZI R,BRIGHENTI A,et al. Sea ice and icing risk for offshore wind turbines[C]//Proceedings of the OWEMES 2006. Citavecchia,Ita-ly:[s.n.],2006.
    [7] SAMUELSEN E M,LØSET S,EDVARDSEN K. Ma-rine icing observed on KV Nordkapp during a cold air outbreak with a developing polar low in the Barents sea[C]//Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Condi-tions. Trondheim,Norway:[s.n.],2015.
    [8] HORJEN I. Offshore drilling rig ice accretion modeling including a surficial brine film[J]. Cold Regions Sci-ence and Technology,2015,119:84-110.
    [9] RYERSON C C. Superstructure spray and ice accretion on a large U.S. Coast Guard cutter[J]. Atmospheric Research,1995,36(3/4):321-337.
    [10] JONES K F,ANDREAS E L. Sea spray concentra-tions and the icing of fixed offshore structures[J]. Quarterly Journal of the Royal Meteorological Soci-ety,2012,138(662):131-144.
    [11] MAKKONEN L. Atmospheric icing on sea structures:AD-AI44448[R]. Hanover,NH:US Army Corps of Engineers,Cold Regions Research and Engineering Laboratory,1984.
    [12] RYERSON C C. Ice protection of offshore platforms[J]. Cold Regions Science and Technology,2011,65(1):97-110.
    [13] CAMMAERT G. Marine icing on arctic offshore opera-tions[R].[S.l.]:Maritiem Innovatie Platform,2013.
    [14] WOLD L E. A study of the changes in freeboard,sta-bility and motion response of ships and semi-submers-ible platforms due to vessel icing[D]. Stavanger:University of Stavanger,2014.
    [15] GAUTHIER G P,COURTAY A,REBEIZ G M. Mi-crostrip antennas on synthesized low dielectric-con-stant substrates[J]. IEEE Transactions on Antennas and Propagation,1997,45(8):1310-1314.
    [16] 薛国善. 船舶冬季防冻防滑工作[J]. 世界海运, 2013,36(3):30-31.
    [17] RYERSON C C. Assessment of superstructure ice pro-tection as applied to offshore oil operations safety:ERDC/CRREL TR-08-14[R]. Hanover,NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory,2009.
    [18] Polarcus vessel photos[DB/OL]. (2015-02-17)[2016-05-09]. http://www.polarcus.com/media/1290/polarcus-alima-lr.jpg.
    [19] 陆煊,崔玫,曹洪波,等. 船舶防冻除冰技术现状与发展[J]. 船海工程,2016,45(2):37-39. LU X,CUI M,CAO H B,et al. Present situation and development of de-icing and prevent frostbite technol-ogy of ships[J]. Ship & Ocean Engineering,2016, 45(2):37-39(in Chinese).
    [20] VILLENEUVE E,HARVEY D,ZIMCIK D,et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society,2015,60(4):1-12.
    [21] PALACIOS J,SMITH E,ROSE J,et al. Instanta-neous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal,2011,49(6):1158-1167.
    [22] WÅHLIN J,KLEIN-PASTE A. The effect of com-mon deicing chemicals on the hardness of compacted snow[J]. Cold Regions Science and Technology, 2015,109:28-32.
    [23] WÅHLIN J,LEISINGER S,KLEIN-PASTE A. The effect of sodium chloride solution on the hardness of compacted snow[J]. Cold Regions Science and Tech-nology,2014,102:1-7.
    [24] 王冠,张德远,陈华伟. 飞机防冰-从传统到仿生的发展[J]. 工业技术创新,2014,1(2):241-250. WANG G,ZHANG D Y,CHEN H W. The develop-ment of aircraft anti-icing——from traditional to bionic[J]. Industrial Technology Innovation,2014,1(2):241-250(in Chinese).
    [25] AYRES J,SIMENDINGER W H,BALIK C M. Char-acterization of titanium alkoxide sol-gel systems de-signed for anti-icing coatings:I. Chemistry[J]. Jour-nal of Coatings Technology and Research,2007,4(4):463-471.
    [26] WONG T S,KANG S H,TANG S K Y,et al. Bioin-spired self-repairing slippery surfaces with pres-sure-stable omni-phobicity[J]. Nature,2011,477(7365):443-447.
    [27] KIM P,WONG T S,ALVARENGA J,et al. Liq-uid-infused nanostructured surfaces with extreme an-ti-ice and anti-frost performance[J]. ACS Nano, 2012,6(8):6569-6577.
    [28] LEE J W,HWANG W. Exploiting the silicon content of aluminum alloys to create a superhydrophobic sur-face using the sol-gel process[J]. Materials Letters, 2016,168:83-85.
    [29] LEI H,XIAO J,ZHENG L P,et al. Superhydropho-bic coatings based on colloid silica and fluorocopoly-mer[J]. Polymer,2016,86:22-31.
    [30] PENG P P,KE Q P,ZHOU G,et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328.
    [31] HUANG Y,SARKAR D K,CHEN X G. Superhydro-phobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance proper-ties[J]. Applied Surface Science, 2015, 356:1012-1024.
    [32] WANG Y Y,XUE J,WANG Q J,et al. Verification of icephobic/anti-icing properties of a superhydropho-bic surface[J]. ACS Applied Materials & Interfaces, 2013,5(8):3370-3381.
    [33] MEULER A J,SMITH J D,VARANASI K K,et al. Relationships between water wettability and ice adhe-sion[J]. ACS Applied Materials & Interfaces,2010, 2(11):3100-3110.
    [34] FARHADI S,FARZANEH M,KULINICH S A. An-ti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science, 2011, 257(14):6264-6269.
    [35] LEE C,NAM Y,LASTAKOWSKI H,et al. Two types of Cassie-to-Wenzel wetting transitions on su-perhydrophobic surfaces during drop impact[J]. Soft Matter,2015,11(23):4592-4599.
    [36] DOU R M,CHEN J,ZHANG Y F,et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003.
    [37] GOLOVIN K,KOBAKU S P R,LEE D H,et al. De-signing durable icephobic surfaces[J]. Science Ad-vances,2016,2(3):e1501496.
  • [1] 赵云瑞, 高海波, 林治国, 郭蕴华, 张建峰.  基于组合赋权-TOPSIS法的极地邮轮减摇鳍选型评价 . 中国舰船研究, 2021, (): 1-7. doi: 10.19693/j.issn.1673-3185.02037
    [2] 王秀飞, 刘昆, 费宝祥, 王加夏, 王自力.  考虑细长杆件不同坠落角度的海洋平台甲板损伤预报方法 . 中国舰船研究, 2021, 16(2): 1-10. doi: 10.19693/j.issn.1673-3185.01831
    [3] 李华峰, 刘炎, 徐凯, 张涛, 朱嘉明.  基于异构网络的物联网海洋大气腐蚀加速实验平台 . 中国舰船研究, 2021, (): 1-8. doi: 10.19693/j.issn.1673-3185.01946
    [4] 倪宝玉, 黄其, 陈绾绶, 薛彦卓.  计及流体影响的船舶回转冰阻力数值模拟 . 中国舰船研究, 2020, 15(2): 1-7. doi: 10.19693/j.issn.1673-3185.01796
    [5] 周强, 王青山, 钟锐.  阻振结构在甲板结构低频隔振中的应用研究 . 中国舰船研究, 2020, 15(5): 176-182. doi: 10.19693/j.issn.1673-3185.01671
    [6] 蔡伟, 朱凌.  冰碰载荷下船体板弹塑性动力响应分析 . 中国舰船研究, 2020, 15(6): 155-161. doi: 10.19693/j.issn.1673-3185.01804
    [7] 兰君辉, 李天匀, 朱翔, 李维嘉.  基于并联式平台的船舶轴段定位及工作空间分析 . 中国舰船研究, 2019, 14(6): 67-72. doi: 10.19693/j.issn.1673-3185.01382
    [8] Ogai Sergei, Voyloshnikov Michael.  确定多用途冰区航行船舶设计特性最优值的叠加性和互换性方法 . 中国舰船研究, 2019, 14(Supp 2): 65-70. doi: 10.19693/j.issn.1673-3185.01966
    [9] 王超, 韩康, 汪春辉, 李兴.  冰区航行船舶推进器特殊性分析 . 中国舰船研究, 2019, 14(2): 1-7. doi: 10.19693/j.issn.1673-3185.01340
    [10] 马坤, 胡高源, 梁舒凡.  极地船舶积冰计算及其对参数横摇的影响分析 . 中国舰船研究, 2019, 14(Supp 1): 61-65. doi: 10.19693/j.issn.1673-3185.01572
    [11] 薛梅新, 杨鹏举, 赵翠娜.  基于LS-DYNA的主蒸汽管道防甩设计影响因素分析 . 中国舰船研究, 2018, 13(2): 123-128. doi: 10.3969/j.issn.1673-3185.2018.02.017
    [12] 陈红超, 宋靠华, 包剑, 罗雯军.  水面舰船集防系统的超压值仿真分析 . 中国舰船研究, 2018, 13(2): 35-40. doi: 10.3969/j.issn.1673-3185.2018.02.005
    [13] 王超, 封振, 李兴, 李鹏.  航行于碎冰区船舶冰阻力与冰响应探析 . 中国舰船研究, 2018, 13(1): 73-78. doi: 10.3969/j.issn.1673-3185.2018.01.011
    [14] 程科, 耿继晨, 刘芳华.  应用于海洋平台的拖链结构设计与数值分析 . 中国舰船研究, 2018, 13(Supp 1): 111-114,120. doi: 10.19693/j.issn.1673-3185.01125
    [15] 段菲, 张利军, 陈鸽, 姜海宁, 张琪.  基于多目标优化算法NSGA II的极地穿梭油轮型线设计 . 中国舰船研究, 2017, 12(6): 66-72. doi: 10.3969/j.issn.1673-3185.2017.06.010
    [16] 吕保达, 刘敬喜, 解德, 龚榆峰.  基于UMAT的冰—结构相互作用数值仿真 . 中国舰船研究, 2015, 10(1): 39-45. doi: 10.3969/j.issn.1673-3185.2015.01.006
    [17] 黄金锋, 许浒.  基于模板技术构建船舶螺旋桨设计平台 . 中国舰船研究, 2013, 8(1): 90-97. doi: 10.3969/j.issn.1673-3185.2013.01.014
    [18] 熊瑛, 许建, 骆立强, 危嵩.  OPC技术在船舶综合平台管理系统中的应用 . 中国舰船研究, 2009, 4(06): 58-61,65. doi: 10.3969/j.issn.1673-3185.2009.06.013
    [19] 危嵩, 熊瑛, 胡鹏, 龚纯.  通用船舶综合平台管理系统模型研究 . 中国舰船研究, 2008, 3(5): 57-61. doi: 10.3969/j.issn.1673-3185.2008.05.013
    [20] 叶剑平, 赵耀, 何书韬, 袁华.  海洋平台结构系统弹塑性整体计算的裂纹柱壳新单元 . 中国舰船研究, 2008, 3(2): 11-15,30. doi: 10.3969/j.issn.1673-3185.2008.02.004
  • 加载中
计量
  • 文章访问数:  292
  • HTML全文浏览量:  5
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-17
  • 刊出日期:  2017-01-07

极地航行船舶及海洋平台防冰和除冰技术研究进展

doi: 10.3969/j.issn.1673-3185.2017.01.008
    基金项目:  国家自然科学基金资助项目(51379048)
    作者简介:

    谢强,男,1990年生,博士生。研究方向:极地船舶与装备防冰和除冰技术。E-mail:455924666@qq.com;陈海龙,男,1980年生,博士。研究方向:极地大科学及项目管理

    通讯作者: 章继峰(通信作者),男,1976年生,博士,教授,博士生导师。研究方向:极地船舶与装备防冰和除冰技术。E-mail:jfzhang@hrbeu.edu
  • 中图分类号: U674.21

摘要: 极地具有气候环境极端恶劣、海气交换强烈、湿度很大等特点,在此航行(或冰区航行)的船舶和海洋平台结构表面极易形成覆冰,它不仅影响设备操作,更直接威胁到船舶和海洋平台的安全。对国内外极地航行船舶及海洋平台防冰和除冰技术的现状进行综述。首先,介绍覆冰对极地航行船舶及海洋平台不同部位的影响和危害程度。然后,归纳和分析国内外现有防冰和除冰方法与技术,包括电加热、红外线、超声导波等主动除冰方法,以及超疏水涂层、牺牲性涂层、水润滑涂层以及低交联度界面滑移涂层等被动除冰方法。最后,总结现有防冰和除冰技术在极地航行船舶及海洋平台上的适用性及优缺点,为极地航行船舶及海洋平台的防除冰设计提供参考。

English Abstract

谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
引用本文: 谢强, 陈海龙, 章继峰. 极地航行船舶及海洋平台防冰和除冰技术研究进展[J]. 中国舰船研究, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
Citation: XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. doi: 10.3969/j.issn.1673-3185.2017.01.008
参考文献 (37)

目录

    /

    返回文章
    返回