留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水动力噪声计算方法综述

李环 刘聪尉 吴方良 陈灿

李环, 刘聪尉, 吴方良, 陈灿. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
引用本文: 李环, 刘聪尉, 吴方良, 陈灿. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
LI Huan, LIU Congwei, WU Fangliang, CHEN Can. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
Citation: LI Huan, LIU Congwei, WU Fangliang, CHEN Can. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011

水动力噪声计算方法综述

doi: 10.3969/j.issn.1673-3185.2016.02.011
基金项目: 国家自然科学基金资助项目(U1430236,51479041,51279038)
详细信息
    作者简介:

    李环,男,1983年生,硕士,工程师。研究方向:舰船总体设计与性能研究。E-mail:lidehuan11@163.com;吴方良,男,1975年生,博士,高级工程师。研究方向:舰船总体研究与设计。E-mail:wflcjh@163.com

    通讯作者:

    刘聪尉(通信作者),男,1990年生,硕士,助理工程师。研究方向:舰船性能及水动力噪声。E-mail:lcw_csic@163.com

  • 中图分类号: U661.1

A review of the progress for computational methods of hydrodynamic noise

  • 摘要: 准确量化评估水动力噪声,对研制反潜水面舰船、安静型潜艇和隐身鱼雷等高性能航行体具有重要意义。由航行体型线变化、表面曲率不连续和各种扰动引起的三维非定常外流场是航行体水动力噪声的源场。分述航行体表面湍流边界层、空腔振荡、空化和粗糙度诱发水动力噪声的机理和研究进展。在分析水动力噪声数值预报难点的基础上,综述流体动力噪声计算方法研究进展。着重比较在航行体水动力噪声工程预报方面有较好前景的3种方法:声类比法、粘声分离法和声边界条件法。
  • [1] 周心一,吴有生. 流体动力性噪声的相似关系研究[J]. 声学学报,2002,27(4):373-378. ZHOU Xinyi,WU Yousheng. Study of similarities for fluid-dynamic noise[J]. Acta Acustica, 2002, 27(4):373-378.
    [2] MCALPINE A,ASTLEY R J. Review:aeroacoustics research in Europe:the CEAS-ASC report on 2011 highlights[J]. Journal of Sound and Vibration,2012, 331(21):4609-4628.
    [3] TAM C K W. Computational aeroacoustics[M]. New York:Cambridge University Press,2012.
    [4] 谭林森,骆东平,吴崇健,等. 潜水器动力舱振动与声辐射[J]. 华中理工大学学报,1999,27(11):7-9. TAN Linsen,LUO Dongping,WU Chongjian,et al. The vibration and sound radiation of submarine dynamic cabin[J]. Journal of Huazhong University of Science and Technology,1999,27(11):7-9.
    [5] 刘凯,朱石坚,丁少春. 鱼雷减振降噪技术应用与发展[J]. 鱼雷技术,2008,16(6):24-27. LIU Kai,ZHU Shijian,DING Shaochun. Application and development of vibration and noise suppression technology for torpedo[J]. Torpedo Technology, 2008,16(6):24-27.
    [6] 李东升,吕世金,俞孟萨. 水面舰船水动力辐射噪声工程估算[C]//水下噪声学术论文选集(1985-2005). 苏州:中国造船工程学会,2005:83-91.
    [7] 伏同先. 俄罗斯潜艇声学设计和噪声控制特点分析[J]. 舰船工程研究,1995(2):31-35.
    [8] JENKINS C J,JAMES J H. Theoretical acoustics and its application to submarine radiated noise[C]//Proceeding of the UDT-90 Undersea Defence Technology Conference. London:Microwave Exhibitions and Pubns Ltd,1990:609-614.
    [9] BEATTIE G A,KENCHINGTON C J. The assessment of tiling strategies for naval vessel[C]//Proceedings of VDT 1994 Conference,1994:176-181.
    [10] GARNIER B,AVOLER C. GAP a simple model to calculate vibration & sound radiation of submarines[C]//The Royal Institution of Naval Architects War-ship International Symposium on Conventional Navy Submarines,1988:3-5.
    [11] SILHONETTE L,CHATEL G. Underwater noise control strategy for submarine equipments[C]//Proceedings of VDT 1992 Conference,1992:59-62.
    [12] 卢云涛,张怀新,潘徐杰. 全附体潜艇的流场和流噪声的数值模拟[J]. 振动与冲击,2008,27(9):142-146. LU Yuntao,ZHANG Huaixin,PAN Xujie. Numerical simulation of flow-field and flow-noise of a fully appendage submarine[J]. Journal of Vibration and Shock,2008,27(9):142-146.
    [13] 高霄鹏. 舰艇水动力噪声的数值分析与拖曳模测试技术研究[D]. 上海:上海交通大学,2007.
    [14] 张楠,沈泓萃,姚惠之,等. 孔穴流激噪声的计算与验证研究[J]. 船舶力学,2008,12(5):799-805. ZHANG Nan,SHEN Hongcui,YAO Huizhi,et al. Validation and calculation of flow-induced noise of cavity[J]. Journal of Ship Mechanics,2008,12(5):799-805.
    [15] 林建忠. 湍流的拟序结构[M]. 北京:机械工业出版社,1995.
    [16] 童秉刚,张炳暄,崔尔杰. 非定常流与涡运动[M]. 北京:国防工业出版社,1993.
    [17] 陶文铨. 数值传热学[M]. 2版. 西安:西安交通大学出版社,2001.
    [18] HARDIN J C. Acoustic sources in the low Mach number turbulent boundary layer[J]. The Journal of the Acoustical Society of America, 1991, 90(2):1020-1031.
    [19] CORRISIN S,KISTLER A L. Free-stream boundaries of turbulent flows:NACA-TR-1244[R]. Baltimore,MD,United States:Johns Hopkins University,1955.
    [20] KINE S J,REYNOLDS W C,SCHRAUB F A,et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics,1967,30(4):741-773.
    [21] SCHLICHTING H. Boundary layer theory[M]. New York:McGraw-Hill Book Company Int.,1955.
    [22] SKUDRZYK E J,HADDLE G P. Noise production in a turbulent boundary layer by smooth and rough sur-faces[J]. The Journal of the Acoustical Society of America,1960,32(1):19-34.
    [23] 梁在潮. 工程湍流[M]. 武汉:华中理工大学出版社,1999.
    [24] LIGHTHILL M J. On sound generated aerodynamically. I. general theory[J]. Proceedings of the Royal Society A(Mathematical,Physical and Engineering Sciences),1952,211(1107):564-587
    [25] HOWE M S. Surface pressures and sound produced by turbulent flow over smooth and rough walls[J]. The Journal of the Acoustical Society of America, 1991,90(2):1041-1047.
    [26] GOODY M. Empirical spectral model of surface pressure fluctuations[J]. AIAA Journal,2004,42(9):1788-1794.
    [27] SMOL'YAKOV A V. Calculation of the spectra of pseudosound wall-pressure fluctuations in turbulent boundary layers[J]. Acoustical Physics,2000,46(3):342-347.
    [28] MILLER T S. Turbulent boundary layer models for acoustic analysis[D]. Kansas:Wichita State University,2011.
    [29] CORCOS G M. The resolution of turbulent pressures at the wall of a boundary layer[J]. Journal of Sound and Vibration,1967,6(1):59-70.
    [30] CHASE D M. The wave-vector-frequency spectrum of pressure on a smooth plane in turbulent boundary-layer flow at low Mach number[J]. The Journal of the Acoustical Society of America,1991,90(2), 1032-1040.
    [31] GRAHAM W R. A Comparison of models for the wavenumber-frequency spectrum of turbulent boundary layer pressures[J]. Journal of Sound and Vibration,1997,206(4):541-565.
    [32] 李福新,张宇文. 低波数下平板湍流边界层壁压起伏的波数-频率谱[J]. 西北工业大学学报,1999, 17(1):9-14. LI Fuxin,ZHANG Yuwen. Wavenumber frequency spectrum of the turbulent boundary layer wall pres-sure of a plate at acoustic and subconvective wave-numbers[J]. Journal of Northwestern Polytechnical University,1999,17(1):9-14.
    [33] BORISYUK A O,GRINCHENKO V T. Vibration and noise generation by elastic elements excited by turbulent flow[J]. Journal of Sound and Vibration,1997, 204(2):213-237.
    [34] 王春旭,曾革委,许建. 湍流边界层脉动压力波数-频率谱模型对比研究[J]. 中国舰船研究,2011, 6(1):35-40. WANG Chunxu,ZENG Gewei,XU Jian. A comparative study of models for the wavenumber-frequency spectrum of TBL fluctuation pressure[J]. Chinese Journal of Ship Research,2011,6(1):35-40.
    [35] HADDLE G P,SKUDRZYK E J. The physics of flow noise[J]. The Journal of the Acoustical Society of America,1969,46(1B):130-157.
    [36] VRECCHIC E A,WILEY C A. Noise radiated from a turbulent boundary layer[J]. The Journal of the Acoustical Society of America, 1973, 53(2):596-601.
    [37] 李福新,张宇文,石秀华. 平板湍流边界层的声辐射[J]. 应用力学学报,2000,17(3):17-22. LI Fuxin, ZHANG Yuwen, SHI Xiuhua. Direct acoustic radiation from turbulent boundary layer[J]. Chinese Journal of Applied Mechanics,2000,17(3):17-22.
    [38] PAN Y C,ZHANG H X. LES method for investigation of noise generated by turbulent boundary layer[J]. Journal of Ship Mechanics, 2009, 13(6):990-1001.
    [39] 李环,方涛,吴方良,等. 不可压缩空腔流的振荡模式[J]. 力学学报,2013,45(5):782-186. LI Huan,FANG Tao,WU Fangliang,et al. The os-cillation mode of incompressible cavity flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(5):782-186.
    [40] 刘聪尉,吴方良,李环,等. 空腔不可压缩流动特征及其声学特性研究[J]. 水动力学研究与进展(A辑),2014,29(2):218-224. LIU Congwei,WU Fangliang,LI Huan,et al. Investigation on the characteristics of incompressible flow and acoustic fields of cavity[J]. Chinese Journal of Hydrodynamics(Ser. A),2014,29(2):218-224.
    [41] ROCKWELL D,NAUDASCHER E. Review-selfsustaining oscillations of flow past cavities[J]. Journal of Fluids Engineering,1978,100(2):152-165.
    [42] GHARIB M,ROSHKO A. The effect of flow oscillations on cavity drag[J]. Journal of Fluid Mechanics, 1987,177:501-530.
    [43] ROCKWELL D,NAUDASCHER E. Self-sustained oscillations of impinging free shear layers[J]. Annual Review of Fluid Mechanics,1979,11(1):67-94.
    [44] ROCKWELL D,KNISELY C. The organized nature of flow impingement upon a corner[J]. Journal of Fluid Mechanics,1979,93(3):413-432.
    [45] BURROUGHS C B,STINEBRING D R. Cavity flow tones in water[J]. The Journal of the Acoustical Society of America,1994,95(3):1256-1263.
    [46] HOWE M S. Low Strouhal number instabilities of flow over apertures and wall cavities[J]. The Journal of the Acoustical Society of America,1997,102(2):772-780.
    [47] PEREIRA J C F,SOUSA J M M. Experimental and numerical investigation of flow oscillations in a rectangular cavity[J]. Journal of Fluids Engineering,1995, 117(1):68-74.
    [48] LIN J C,ROCKWELL D. Organized oscillations of initially turbulent flow past a cavity[J]. AIAA Journal,2001,39(6):1139-1151.
    [49] GRACE S M,DEWAR W G,WROBLEWSKI D E. Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers[J]. Experiments in Fluids,2004,36(5):791-804.
    [50] CHATELLIER L,LAUMONIER Y,GERVAIS Y. Theoretical and experimental investigations of low Mach number turbulent cavity flows[J]. Experiments in Fluids,2004,36(5):728-740.
    [51] ASHCROFT C,ZHANG X. Vortical structures over rectangular cavities at low speed[J]. Physics of Flu-ids,2005,17(1):015104.
    [52] ROWLEY C W,COLONIUS T,BASU A J. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities[J]. Journal of Fluid Mechanics,2002,455(3):315-346.
    [53] GENG D H,WANG Y. Prediction of hydrodynamic noise of open cavity flow[J]. Transactions of Tianjin University,2009,15(5):336-342.
    [54] 刘敏,张宁,周友明,等. 不同形式表面开孔水下回转体流噪声特性研究[J]. 中国造船,2012,53(2):12-18. LIU Min,ZHANG Ning,ZHOU Youming,et al. Flow induced noise simulation of two underwater fenestrated revolution bodies[J]. Shipbuilding of China,2012,53(2):12-18.
    [55] 王玉,王树新,刘玉红. 刚性壁面三维陷落腔涡流器噪声机理研究[J]. 船舶力学,2012,16(11):1321-1328. WANG Yu, WANG Shuxin, LIU Yuhong. Research on turbulent flow noise mechanism of 3D rigid cavity[J]. Journal of Ship Mechanics,2012,16(11):1321-1328.
    [56] 李晓东,刘靖东,高军辉. 空腔流激振荡发声的数值模拟研究[J]. 力学学报,2006,38(5):599-604. LI Xiaodong, LIU Jingdong, GAO Junhui. Numerical simulation of flow-induced oscillation and sound generation in a cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):599-604.
    [57] ROSS D. 水下噪声原理[M].《水下噪声原理》翻译组,译. 北京:海洋出版社,1983.
    [58] COLE R H. Underwater explosions[M]. Princeton:Princeton University Press,1948.
    [59] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philo-sophical Magazine Series 6,1917,34(200):94-98.
    [60] PLESSET M S,CLWPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971,47(2):283-290.
    [61] NOLTINGK B E,NEPPIRAS E A. Cavitation produced by ultrasonics[J]. Proceedings of the Physical Society:Section B,1950,63(9):674-685
    [62] GILMORE F R. The growth or collapse of a spherical bubble in a viscous compressible liquid:No. 26[R]. California:California Institute of Technology Report, 1952:26-42.
    [63] BENJAMIN T B,ELKS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries[J]. Philosophical Transactions of the Royal Society A(Mathematical,Physical and Engineering Sciences), 1966, 260(1110):221-240.
    [64] SHIMA A. The behavior of a spherical bubble in the vicinity of a solid wall[J]. Journal of Basic Engineer-ing,1968,90(1):75-89.
    [65] MITCHELL T M,HAMMITT F G. Asymmetric cavitation bubble collapse[J]. Journal of Fluids Engineering,1973,95(1):29-37.
    [66] HSIEH D Y. Variational methods and dynamics of nonspherical bubbles and liquid drops[C]//Proceedings of the 1973 Symposium on Finite-Amplitude Wave Effects in Liquids. Copenhagen,1974.
    [67] BAILLY C,JUVÉ D. Numerical solution of acoustic propagation problems using linearized Euler equations[J]. AIAA Journal,2000,38(1):22-29.
    [68] SZSMRCZAK W G,ROGERS J C W,SOLOMON J M,et al. A numerical algorithm for hydrodynamic free boundary problems[J]. Journal of Computational Physics,1993,106(2):319-336.
    [69] ZHANG S G,DUNCAN D H,CHANINE G L. The final stage of the collapse a cavitation bubble near a rigid wall[J]. Journal of Fluid Mechanics,1993,257:147-181.
    [70] LUNDGRER T S,MANSOUR N N. Vortex ring bubbles[J]. Journal of Fluid Mechanics,1991,224:177-196.
    [71] 戚定满,鲁传敬,何友声. 空泡溃灭及空化噪声研究综述[J]. 上海力学,1999,20(1):1-9. QI Dingman,LU Chuanjing,HE Yousheng. A review of bubble collapse and cavitation noise[J]. Chinese Quarterly of Mechanics,1999,20(1):1-9.
    [72] EBELING K J,ZUM V K. Cavitation sblasen in wesser[J]. Acuatica,1978:511-517.
    [73] VOGEL A, LAUTERBORN W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries[J]. Acoustic Society of America, 1988,84(2):719-731.
    [74] HICKLING R,PLESSET M S. Collapse and rebound of a spherical bubble in water[J]. Physics of Fluids, 1964,7(1):7-14.
    [75] TOMITA Y,SHIMS A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J]. Journal of Fluid Mechanics,1986, 169:535-564.
    [76] SANADA N,TAKAYAMA K,ONODERA O,et al. Interaction of an air bubble with a shock wave generated by a micro-explosion in water[C]//Proceeding of the Interaction Symposium on Cavitation. Japan, 1986:67-72.
    [77] HOWE M S. The turbulent boundary-layer roughwall pressure spectrum at acoustic and subconvective wavenumbers[J]. Proceedings of the Royal Society A (Mathematical,Physical and Engineering Sciences), 1988,415(1848):141-161.
    [78] HOWE M S. On the generation of sound by turbulent boundary layer flow over a rough wall[J]. Proceedings of the Royal Society A(Mathematical,Physical and Engineering Sciences), 1984, 395(1809):247-263.
    [79] CHASE D M. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J]. Journal of Sound and Vibration,1980,70(1):29-67.
    [80] LIU Y,DOWLING A P. Assessment of the contribution of surface roughness to airframe noise[J]. AIAA Journal,2007,45(4):855-869.
    [81] HOWE M S. Acoustics of fluid-structure interactions[M]. Cambridge, England:Cambridge University Press,1998.
    [82] HERSH A S. Experimental investigation of surface roughness generated flow noise[C]//Proceedings of the 8th American Institute of Aeronautics and Astronautics,Aeroacoustics Conference. Atlanta:AIAA, 1983.
    [83] 俞孟萨,吴有生,庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学,2007,11(1):152-158. YU Mengsa,WU Yousheng,PANG Yezhen. A review of progress for hydrodynamic noise of ships[J]. Journal of Ship Mechanics,2007,11(1):152-158.
    [84] WALDERHAUG H. Paint roughness effects on skin friction[J]. International Shipbuilding Progress, 1986,33:96-103.
    [85] LEWKOWICZ A K,DAS D K. Turbulent boundary layers on rough surfaces with and without a pliable overlayer:a simulation of marine fouling[J]. International Shipbuilding Progress,1986,33:174-186.
    [86] 田军,徐锦芳,薛群基. 水下流噪声及其消减措施[J]. 材料科学与工程,1996,14(2):27-30.TIAN Jun,XU Jinfang,XUE Qunji. The progress of flow noise reduction methods[J]. Materials Science and Engineering,1996,14(2):27-30.
    [87] DE ROECK W. Hybride methodologies for the computational aeroacoustic analysis of confined,subsonic flows[D]. Leuven:Katholieke Universiteit Leuven, 2007.
    [88] TAM C K W,WEBB J C. Dispersion-relation-pre-serving finite difference schemes for computational acoustics[J]. Journal of Computational Physics, 1993,107(2):262-281.
    [89] TAM C K W,DONG Z. Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow[J]. Journal of Computational Acoustics, 1996, 4(2):175-201.
    [90] COLONIUS T,LELE S K. Computational aeroacoustics:progress on nonlinear problems of sound genera-tion[J]. Progress in Aerospace Sciences,2004,40(6):345-416.
    [91] MITCHELL B E,LELE S K,MOIN P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics,1995, 285:181-202.
    [92] FREUND J B,LELE S K,MOIN P. Numerical simulation of a Mach 1.92 turbulent jet and its sound field[J]. AIAA Journal,2000,38(11):2023-2031.
    [93] FREUND J B. Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9[J]. Journal of Fluid Mechanics,2001,438:277-305.
    [94] RAN H Y,COLONIUS T. Numerical simulation of sound radiated from a turbulent vortex ring[C]//Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference,2004.
    [95] BARONE M F,LELE S K. A numerical technique for trailing edge acoustic scattering problems[C]//Pro-ceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit,2003.
    [96] LE GARREC T,GLOERFELT X,CORRE C. Direct noise computation of trailing edge noise at high Reyn-olds numbers[C]//Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference(29th AIAA Aeroacoustics Conference). Vancouver,British Columbia Canada:AIAA,2008.
    [97] EWERT R, SCHRÖDER W. On the simulation of trailing edge noise with a hybrid LES/APE method[J]. Journal of Sound and Vibration,2004,270(3):509-524.
    [98] FREUND J B,LELE S K,MOIN P. Matching of near/far-field equations sets for direct computation of aerodynamic sound[C]//Proceedings of the 15th Aeroacoustics Conference. Long Beach,CA:AIAA,1993.
    [99] DE ROECK W, RUBIO G, BAELMANS M, et al. Towards accurate hybrid prediction techniques for cavity flow noise applications[J]. International Journal for Numerical Methods in Fluids,2009,61(12):1363-1387.
    [100] PROUDMAN I. The generation of noise by isotropic turbulence[J]. Proceedings of the Royal Society A (Mathematical,Physical and Engineering Sciences),1952,214(1116):119-132.
    [101] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of Royal Society A(Mathematical,Physical and Engineering Sciences),1955,231(1187):505-514.
    [102] FFOWCS WILLIAMS J E,HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1969,264(1151):321-342.
    [103] GOLDSTEIN M E. A generalized acoustic analogy[J]. Journal of Fluid Mechanics, 2003, 488:315-333.
    [104] BOGEY C,GLOERFELT X,BAILLY C. Illustration of the inclusion of sound-flow interactions in lighthill's equation[J]. AIAA Journal,2003,41(8):1604-1606.
    [105] CABANA M,FORTUNÉ V,JORDAN P. A look inside the lighthill source term[C]//Proceedings of the AIAA/CEAS Aeroacoustics Conference. Cambridge:AIAA,2006.
    [106] 刘明静,马运义. 潜艇艏部声呐流噪声计算方法研究[J]. 船海工程,2009,38(5):46-49. LIU Mingjing,MA Yunyi. Analysis on hydrodynamic noise simulation around submarine fore region[J]. Ship and Ocean Engineering,2009,38(5):46-49.
    [107] 杨琼方,王永生,张明敏. 潜艇涡量场和流噪声等效声中心的数值预报[J]. 华中科技大学学报(自然科学版),2012,40(5):64-70. YANG Qiongfang, WANG Yongsheng, ZHANG Mingmin. Numerical simulation of vorticity field and determination of equivalent acoustic source of flow noises for submarine[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2012,40(5):64-70.
    [108] 江文成,张怀新,孟堃宇. 基于边界元理论求解水下潜艇流噪声的研究[J]. 水动力学研究与进展A辑,2013,28(4):453-459. JIANG Wencheng,ZHANG Huaixin,MENG Kunyu. Research on the flow noise of underwater submarine based on boundary element method[J]. Chinese Journal of Hydrodynamics,2013,28(4):453-459.
    [109] 吴秋云,朱光,刘玉红,等. 水下航行器声通讯安装结构涡流噪声分析[J]. 天津大学学报,2012, 45(10):881-887. WU Qiuyun,ZHU Guang,LIU Yuhong,et al. Analysis of vortex noise generated by acoustic communication mounted on autonomous underwater vehicle[J]. Journal of Tianjin University,2012,45(10):881-887.
    [110] 陈力. 基于格子Boltzmann方法的水下流噪声数值预报方法研究[D]. 武汉:华中科技大学,2013.
    [111] 黄胜,郑小龙,王超,等. 带螺旋桨的潜艇流场及流噪声的数值计算研究[C]//第十三届全国水动力学学术会议暨第二十六届全国水动力学研讨会论文集——F船舶与海洋工程流体力学. 青岛:全国水动力学会,2014.
    [112] 蒋涛,马军,张萌. 基于大涡模拟的潜艇流噪声预测技术[J]. 海军工程大学学报,2013,25(6):64-68. JIANG Tao,MA Jun,ZHANG Meng. Prediction of submarine hydrodynamic noise by using large eddy simulation[J]. Journal of Naval University of Engineering,2013,25(6):64-68.
    [113] 张咏鸥,张涛,刘继明,等. 基于Lighthill声类比的流激噪声三维计算及验证[J]. 舰船科学技术, 2014,36(9):55-59,64. ZAHNG Yong'ou,ZHANG Tao,LIU Jiming,et al. Three dimensional simulation and validation of the flow-induced noise based on Lighthill's acoustic analogy theory[J]. Ship Science and Technology, 2014,36(9):55-59,64.
    [114] 马瑞贤. 舰船柔性舵流噪声产生机理研究[D]. 哈尔滨:哈尔滨工业大学,2014.
    [115] CROAKER P,KINNS R,KESSISSOGLOU N,et al. Hybrid CFD/BEM approach to predict flow induced noise[C]//Proceedings of 20th International Congress on Acoustics,ICA 2010. Sydney,Australia:ICA,2010.
    [116] OBERAI A A,RONALDKIN F,HUGHES T J R. Computational procedures for determining structural-acoustic response due to hydrodynamic sources[J]. Computer Methods in Applied Mechanics and Engineering,2000,19(3/4):345-361.
    [117] OBERAI A A,RONALDKIN F,HUGHES T J R. Computation of trailing-edge noise due to turbulent flow over an airfoil[J]. AIAA Journal,2002,40(11):2206-2216.
    [118] 曾文德,王永生,杨琼方. 全附体潜艇流噪声数值计算[J]. 兵工学报,2010,31(9):1204-1208. ZENG Wende,WANG Yongsheng,YANG Qiongfang. Numerical calculation of flow noise of submarine with full appendages[J]. Acta Armamentarii, 2010,31(9):1204-1208.
    [119] BÉCHARA W,BAILLY C,LAFON P,et al. Stochastic approach to noise modeling for free turbulent flows[J]. AIAA Journal,1994,32(3):455-463.
    [120] VÉDY E,VAN LIER L,SNELLEN M. A Computational aeroacoustics method for real engineering applications[C]//Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference,2004.
    [121] EWERT R,EMUNDS R. CAA slat noise studies applying stochastic sound sources based on solenoidal digital filters[C]//Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference(26th AIAA Aeroacoustics Conference). Monterey, California:AIAA,2005.
    [122] EWERT R. Slat noise trend predictions using CAA with stochastic sound sources from a random particle mesh method(RPM)[C]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference(27th AIAA Aeroacoustics Conference). Cambridge:AIAA, 2006.
    [123] DASH S M,KENZAKOWSKI D C,PAPP J L. Progress in jet turbulence modeling for aeroacoustic applications[C]//Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Breckenridge:AIAA,2002.
    [124] BLOM C R A,VERHAAR B T,VAN DER HEI-JDEN J C,et al. A linearized euler method based prediction of turbulence induced noise using time-averaged flow properties[C]//Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, 2001.
    [125] KHAVARAN A,BRIDGES J. Modelling of finescale turbulence mixing noise[J]. Journal of Sound and Vibration,2005,279(3/5):1131-1154.
    [126] TAM C K W,AURIAULT L. Jet mixing noise from fine-scale turbulence[J]. AIAA Journal,1999,37(2):145-153.
    [127] BLOM C P A,HAGMMEIJER R,BIESHEUVEL A,et al. A Three-dimensional quadrature-free discontinuous galerkin method for computational aeroacoustics[C]//Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference and Exhibit,2001.
    [128] SNELLEN M,VAN LIER L,GOLLIARD J,et al. Prediction of the flow-induced noise for practical applications using the SNGR methods[C]//Proceeding of Tenth International Congress of Sound and Vibration. Stockholm,Sweden:ICSV,2003:3859-3866.
    [129] 陈荣钱. 基于声波传播方程的计算气动声学混合方法研究[D]. 南京:南京航空航天大学,2012.
    [130] LEONARD A. Computing three-dimensional incompressible flows with vortex elements[J]. Annual Review of Fluid Mechanics,1985,17(1):523-559.
    [131] COTTET G H, KOUMOUTSAKOS P D. Vortex methods:theory and practice[M]. Cambridge:Cambridge University Press,2000.
    [132] GUO Y P. Application of the Ffowcs Williams/Hawk-ings equation to two dimensional problems[J]. Journal of Fluid Mechanics,2000,403:201-221.
    [133] GUO Y P. Prediction of flap side edge noise[C]//Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit,1999.
    [134] HOWE M S. Trailing edge noise at low Mach numbers[J]. Journal of Sound and Vibration,1999,225(2):211-238.
    [135] HOWE M S. Theory of vortex sound[M]. New York:Cambridge University Press,2002.
    [136] HARDIN J C,POPE D S. An acoustic/viscous split-ting technique for computational aeroacoustics[J]. Theoretical and Computational Fluid Dynamics, 1994,6(5/6):323-340.
    [137] HARDIN J C,POPE D S. Sound generation by flow over a two-dimensional cavity[J]. AIAA Journal, 1995,33(3):407-412.
    [138] LEE D J,KOO S O. Numerical study of sound generation due to a spinning vortex pair[J]. AIAA Journal,1995,33(1):20-26.
    [139] EKATERINARIS J A. Upwind scheme for acoustic disturbances generated by low-speed flows[J]. AIAA Journal,1997,35(9):1448-1455.
    [140] SHEN W Z,SØRENSEN J N. Comment on the aeroacoustic formulation of Hardin and pope[J]. AIAA Journal,1999,37(1):141-143.
    [141] SHEN W Z,SØRENSEN J N. Aeroacoustic model-ling of low-speed flows[J]. Theoretical and Computational Fluid Dynamics,1999,13(4):271-289.
    [142] SLIMON S A,SOTERIOU M C,DAVIS D W. Computational aeroacoustics simulations using the expansion about incompressible flow approach[J]. AIAA Journal,1999,37(4):409-416.
    [143] EWERT R,SCHRÖDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics,2003, 188(2):365-398.
    [144] ZHENG T H,TANG S K,SHEN W Z. Simulation of vortex sound using the viscous/acoustic splitting approach[J]. Transactions of the Canadian Society for Mechanical Engineering,2011,35(1):39-56.
    [145] SCHMITT C,PITSCH H. Reactive linearized equations of perturbed compressible variables for low-Mach number variable-density flows[J]. Journal of Computational Physics,2015,281:1-27.
    [146] BOGEY C,BAILLY C,JUVÉ D. Computation of flow noise using source terms in linearized Euler's equations[J]. AIAA Journal, 2002, 40(2):235-243.
    [147] 李坤. 基于无网格方法的声学问题数值模拟研究[D]. 武汉:华中科技大学,2011.
    [148] CHU B T,KOVÁSZNAY L S G. Non-linear interactions in a viscous heat conducting compressible gas[J]. Journal of Fluid Mechanics,1958,3(5):494-514.
    [149] DE ROECK W,BAELMANS M,DESMET W. Aerodynamic/acoustic splitting technique for computation aeroacoustics applications at low-Mach numbers[J]. AIAA Journal,2008,46(2):463-475.
    [150] POWELL A. Theory of vortex sound[J]. The Journal of Acoustical Society of America,1964,36(1):177-195.
    [151] HOWE M S. Contributions to the theory of aerodynamic sound,with application to excess jet noise and the theory of the flute[J]. Journal of Fluid Mechanics,1975,71(4):625-673.
    [152] MÖHRING W,MÜLLER E A,OBERMEIER F. Problems in flow acoustics[J]. Reviews of Modern Physics,1983,55(3):707-724.
    [153] HOWE M S. On the scattering of sound by a rectilinear vortex[J]. Journal of Sound and Vibration, 1999,227(5):1003-1017.
    [154] HOWE M S. Sound generated by fluid-structure interactions[J]. Computers and Structures,1997,65(3):433-446.
    [155] LEUNG R C K,KO N W M. The interaction of perturbed vortex rings and its sound generation[J]. Journal of Sound and Vibration,1997,202(1):1-27.
    [156] DUNNE R C,HOWE M S. Wall-bounded blade-tip vortex interaction noise[J]. Journal of Sound and Vi-bration,1997,202(5):605-618.
    [157] KONNO K,ICHIKAWA Y H. Strong interference of sound pressure generated by vortex soliton with axial flow[J]. Chaos,Solutions and Fractals,1995,5(12):2485-2493.
    [158] 欧阳华,田杰,吴亚东,等. 基于涡声理论的低速轴流风机气动噪声研究[J]. 工程热物理学报, 2009,30(5):765-768. OUYANG Hua,TIAN Jie,WU Yadong,et al. Research of aerodynamic noise source of low speed axial fans based on vortex-sound theory[J]. Journal of Engineering Thermophysics,2009,30(5):765-768.
  • [1] 陈纪军, 潘子英, 彭超, 夏贤, 邱耿耀, 李永成.  十字形和X形艉舵航行体的水动力特性对比 . 中国舰船研究, 2020, 15(2): 8-16. doi: 10.19693/j.issn.1673-3185.01799
    [2] 马坤, 梅树猛, 于津钊.  瘫船稳性横摇周期计算方法讨论分析 . 中国舰船研究, 2020, 15(3): 32-37. doi: 10.19693/j.issn.1673-3185.01574
    [3] 章文文, 徐荣武.  指挥室围壳水动力噪声及控制技术研究综述 . 中国舰船研究, 2020, 15(6): 72-89. doi: 10.19693/j.issn.1673-3185.01816
    [4] 牛峰.  显控台气弹簧支撑结构的力学分析 . 中国舰船研究, 2019, 14(Supp 1): 165-169,188. doi: 10.19693/j.issn.1673-3185.01356
    [5] 王诗洋, 汤佳敏, 王文全, 张祥瑞.  艇桨一体的螺旋桨激振力和水动力噪声数值预报 . 中国舰船研究, 2019, 14(1): 43-51. doi: 10.19693/j.issn.1673-3185.01302
    [6] 李祖荟, 陈美霞.  湍流边界层激励下平板辐射噪声数值计算方法 . 中国舰船研究, 2017, 12(4): 76-82. doi: 10.3969/j.issn.1673-3185.2017.04.012
    [7] 刘强, 王永生, 张明宇, 易文彬, 魏应三.  喷水推进器水下辐射噪声边界元计算方法 . 中国舰船研究, 2017, 12(4): 83-88. doi: 10.3969/j.issn.1673-3185.2017.04.013
    [8] 鲁利, 熊鹰, 王睿.  RANS,DES和LES对螺旋桨流噪声预报的适用性分析 . 中国舰船研究, 2017, 12(6): 43-48,100. doi: 10.3969/j.issn.1673-3185.2017.06.007
    [9] 伍宏亮, 周其斗, 吕晓军, 孟庆昌.  基于湍流脉动压力的波数-频率谱预报流噪声 . 中国舰船研究, 2017, 12(6): 36-42. doi: 10.3969/j.issn.1673-3185.2017.06.006
    [10] 于汉, 李清, 杨德庆.  水面舰船粘性流场和流噪声的数值计算 . 中国舰船研究, 2017, 12(6): 22-29. doi: 10.3969/j.issn.1673-3185.2017.06.004
    [11] 王春旭, 吴崇建, 陈乐佳, 邱昌林, 熊济时.  流致噪声机理及预报方法研究综述 . 中国舰船研究, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
    [12] 王康, 刘国庆, 王强, 张咏鸥, 李旭.  水下航行器水动力噪声分离预报 . 中国舰船研究, 2015, 10(4): 29-38. doi: 10.3969/j.issn.1673-3185.2015.04.005
    [13] 龚京风, 张文平, 明平剑, 宣领宽.  螺旋桨低频流噪声模拟方法研究 . 中国舰船研究, 2012, 7(5): 14-21. doi: 10.3969/j.issn.1673-3185.2012.05.003
    [14] 彭华康, 李天匀, 朱翔.  湍流脉动压力下椭球声呐腔水动力自噪声分析 . 中国舰船研究, 2011, 6(4): 37-42. doi: 10.3969/j.issn.1673-3185.2011.04.008
    [15] 卢锦国, 梁中刚, 吴方良, 周轶美.  水下航行体回转水动力数值计算研究 . 中国舰船研究, 2011, 6(6): 8-12,27. doi: 10.3969/j.issn.1673-3185.2011.06.002
    [16] 陆超, 金永明, 陈锐.  新型巡航救助船全景式驾驶室视野计算分析 . 中国舰船研究, 2011, 6(4): 64-66,71. doi: 10.3969/j.issn.1673-3185.2011.04.013
    [17] 刘昌明, 李云波, 李裕龙.  三体船兴波阻力计算方法比较及兴波干扰研究 . 中国舰船研究, 2009, 4(5): 28-32. doi: 10.3969/j.issn.1673-3185.2009.05.006
    [18] 冯维, 徐青, 吴广明.  船体基座抗冲击研究现状 . 中国舰船研究, 2008, 3(4): 6-09. doi: 10.3969/j.issn.1673-3185.2008.04.002
    [19] 李再承, 侯国祥, 吴崇健.  管系湍流噪声辐射研究方法进展 . 中国舰船研究, 2007, 2(1): 34-38. doi: 10.3969/j.issn.1673-3185.2007.01.007
    [20] 潘镜芙, 闵绍荣.  作战系统的效能分析与评估方法 . 中国舰船研究, 2006, 1(1): 1-8. doi: 10.3969/j.issn.1673-3185.2006.01.001
  • 加载中
计量
  • 文章访问数:  666
  • HTML全文浏览量:  4
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-19
  • 刊出日期:  2016-03-22

水动力噪声计算方法综述

doi: 10.3969/j.issn.1673-3185.2016.02.011
    基金项目:  国家自然科学基金资助项目(U1430236,51479041,51279038)
    作者简介:

    李环,男,1983年生,硕士,工程师。研究方向:舰船总体设计与性能研究。E-mail:lidehuan11@163.com;吴方良,男,1975年生,博士,高级工程师。研究方向:舰船总体研究与设计。E-mail:wflcjh@163.com

    通讯作者: 刘聪尉(通信作者),男,1990年生,硕士,助理工程师。研究方向:舰船性能及水动力噪声。E-mail:lcw_csic@163.com
  • 中图分类号: U661.1

摘要: 准确量化评估水动力噪声,对研制反潜水面舰船、安静型潜艇和隐身鱼雷等高性能航行体具有重要意义。由航行体型线变化、表面曲率不连续和各种扰动引起的三维非定常外流场是航行体水动力噪声的源场。分述航行体表面湍流边界层、空腔振荡、空化和粗糙度诱发水动力噪声的机理和研究进展。在分析水动力噪声数值预报难点的基础上,综述流体动力噪声计算方法研究进展。着重比较在航行体水动力噪声工程预报方面有较好前景的3种方法:声类比法、粘声分离法和声边界条件法。

English Abstract

李环, 刘聪尉, 吴方良, 陈灿. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
引用本文: 李环, 刘聪尉, 吴方良, 陈灿. 水动力噪声计算方法综述[J]. 中国舰船研究, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
LI Huan, LIU Congwei, WU Fangliang, CHEN Can. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
Citation: LI Huan, LIU Congwei, WU Fangliang, CHEN Can. A review of the progress for computational methods of hydrodynamic noise[J]. Chinese Journal of Ship Research, 2016, 11(2): 72-89. doi: 10.3969/j.issn.1673-3185.2016.02.011
参考文献 (158)

目录

    /

    返回文章
    返回