留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流致噪声机理及预报方法研究综述

王春旭 吴崇建 陈乐佳 邱昌林 熊济时

王春旭, 吴崇建, 陈乐佳, 邱昌林, 熊济时. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
引用本文: 王春旭, 吴崇建, 陈乐佳, 邱昌林, 熊济时. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
WANG Chunxu, WU Chongjian, CHEN Lejia, QIU Changlin, XIONG Jishi. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
Citation: WANG Chunxu, WU Chongjian, CHEN Lejia, QIU Changlin, XIONG Jishi. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008

流致噪声机理及预报方法研究综述

doi: 10.3969/j.issn.1673-3185.2016.01.008
基金项目: 国家部委基金资助项目
详细信息
    通讯作者:

    王春旭(通信作者),男,1981年生,博士,高级工程师。研究方向:潜艇声隐身技术。E-mail:260848719@qq.com

  • 中图分类号: U661.44

A comprehensive review on the mechanism of flow-induced noise and related prediction methods

  • 摘要: 从自由湍流噪声、壁面湍流噪声、转子噪声和空腔流动4 个方面对流致噪声机理及预报方法进行综述。对目前工程应用中的3个主要流致噪声预报方法,即Lighthill声比拟理论、Kirchhoff方法和涡声理论的基本原理及适用性进行详细讨论,并对流致噪声数值模拟方法进行总结。其中,Lighthill声比拟理论属噪声源先验理论,虽方便应用但不能描述声流相互作用基础问题;Kirchhoff方法在运用的过程中虽不需要确切获知源的属性,但声源区的计算精度很重要;涡声理论在声流相互作用等领域有着良好的研究前景。自由湍流噪声以四极子雷诺应力源为主,存在如螺旋桨等固壁边界时则会产生偶极子源,在低马赫数流动中是更为有效的声源。
  • [1] LIGHTHILL M J. On sound generated aerodynamically. Ⅰ. general theory[J]. Proceedings of the Royal Society of London(Series A),1952,211(1107):564-587.
    [2] LIGHTHILL M J. On sound generated aerodynamical-ly. Ⅱ. turbulence as a source of sound[J]. Pcoceed-ings of the Royal Society of London(Series A),1954, 222(1148):1-32.
    [3] 王春旭. 水下湍射流及壁面湍流噪声预报方法[D]. 武汉:华中科技大学,2009.
    [4] POWELL A. Theory of vortex sound[J]. The Journal of Acoustic Society of America,1964,32(8):982-990.
    [5] HOWE M S. Contributions to the theory of aerodynam-ic sound,with application to excess jet noise and the theory of the flute[J]. Journal of Fluid Mechanics, 1975,71(4):625-673.
    [6] COLONIUS T,LELE S K. Computational aeroacous-tics:progress on nonlinear problems of sound genera-tion[J]. Progress in Aerospace Science,2004,40(6): 345-416.
    [7] WANG M,FREUND J B,LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics,2006,38:483-512.
    [8] CROW S C. Aerodynamic sound emission as a singular perturbation problem[J]. Studies in Applied Mathemat-ics,1970,49(1):21-46.
    [9] WANG M,LELE S K,MOIN P. Sound radiation during local laminar breakdown in a low-Mach-number boundary layer[J]. Journal of Fluid Mechanics,1996, 319:197-218.
    [10] AVITAL E J,SANDHAM N D,LUO K H. Calculation of basic sound radiation of axisymmetric jets by direct numerical simulations[J]. AIAA Journal,1999,37 (2):161-168.
    [11] LILLEY G M. On the noise from jets: AGARD CP-131[R].[S.l.:s.n.],1974
    [12] RIBNER H S. Perspectives on jet noise[J]. AIAA Journal,1981,19(12):1513-1526.
    [13] GOLDSTEIN M E. A generalized acoustic analogy[J]. Journal of Fluid Mechanics,2003,488:315-333.
    [14] COLONIUS T,LELE S K,MOIN P. Sound generation in a mixing layer[J]. Journal of Fluid Mechanics, 1997,330:375-409.
    [15] LYRINTZIS A S. Review:the use of Kirchhoff's meth-od in computational aeroacoustics[J]. Journal of Flu-ids Engineering,1994,116(4):665-676.
    [16] MORGANS R P. The Kirchhoff formula extended to a moving surface[J]. Philosophical Magazine,1930,55 (9):141-161.
    [17] FFOWCS-WILLIAMS J E,HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary mo-tion[J]. Philosophical Transactions of the Royal Soci-ety A:Mathematical,Physical and Engineering Sci-ences,1969,264(1151):321-342.
    [18] FARASSAT F,MYERS M K. Extension of Kirchhoff's formula to radiation from moving surfaces[J]. Journal of Sound and Vibration,1988,123(3):451-460.
    [19] MORINO L. A general theory of unsteady compress-ible potential aerodynamics:NASA CR-2464 [R].[S.l.:s.n.],1974.
    [20] MORINO L. Mathematical foundations of integral methods[M]/MORINO L. Computational methods in potential aerodynamics. Berlin:Springer,1985.
    [21] MORINO L,TSENG K. A general theory of unsteady compressible potential flows with applications to aero-planes and rotors[M]/BANERJEE P K,MORINO L. Developments in boundary element methods. Barking UK:Elsevier Applied Science Publisher,1990.
    [22] DOAK P E. Analysis of internally generated sound in continuous materials:3. The momentum potential field description of fluctuating fluid motion as a basis for a unified theory of internally generated sound[J]. Journal of Sound and Vibration,1973,26(1):91-120.
    [23] HOWE M S. On the absorption of sound by turbu-lence and other hydrodynamic flow[J]. Journal of Ap-plied Mathematics and Mechanics, 1984, 84: 187-209.
    [24] YATES J E. Interaction with and production of sound by votex flow[J/OL]. AIAA,1977. [2015-05-30].http://arc.org/doi/abs/10.2514/6.1977-1352.
    [25] OBERMEIER F. On a new representation of aero-acoustics source distribution:two-dimentional model flows[J]. Acoustica,1979,42:58-71.
    [26] GOLDSTEIN M E. High frequency sound emission from moving point multipole sources embedded in ar-bitrary transversely sheared mean flows[J]. Journal of Sound and Vibration,1982,80(4):499-522.
    [27] PARKER R. Acoustic resonances and blade vibration in axial flow compressors[J]. Journal of Sound and Vi-bration,1984,92(4):529-539.
    [28] AHUJA K,BURRIN R H. Control of flow separation by sound[M]. Williamsburg,Virginia:AIAA paper, 1984.
    [29] MARCHMAN Ⅲ J F,SUMANTRAN V,SCHAEFER C G. Acoustic and turbulence influences on stall hys-teresis[J]. AIAA Journal,1987,2(1):50-51.
    [30] WU J Z,VAKILI A D,WU J M. Review of the physics of enhancing vortex lift by unsteady excitation[J]. Progress in Aerospace Sciences,1991,28(2): 73-131.
    [31] GINEVSKY A S,VLASOV Y V,KARAVOSOV R K. Acoustic control of turbulent jets[M]. Berlin:Spring-er-Verlag,2004.
    [32] GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics,1984, 16:263-285.
    [33] 局鸿宾,沈孟育. 计算气动声学的问题、方法与进展[J]. 力学与实践,1995,17(5):1-10.
    [34] 局鸿宾,钟芳源,沈孟育.涡、声干扰研究的某些进展[J]. 力学进展,1997,27(3):358-371. JU Hongbin,ZHONG Fangyuan,SHEN Mengyu. Some advances in research on vortex and sound inter-action[J]. Advances in Mechanics,1997, 27(3): 358-371.
    [35] TAM C K W,GOLEBIOWSKI M,SEINER J M. On the two components of turbulent mixing noise from su-personic jets[C]/The 2nd State College Aeroacous-tics Conference. Pennsylvania, United States,1996: 6-8.
    [36] POWELL A. Aerodynamic noise and the plane bound-ary[J]. The Journal of the Acoustical Society of Amer-ica,1960,32(8):217-236.
    [37] FFOWCS-WILLIAMS J E,KEMPTON A J. The noise from the large-scale structure of a jet[J]. Journal of Fluid Mechanics,1978,84(4):673-694.
    [38] HUERRE P,CRIGHTON D G. Sound generation by instability waves in a low Mach number jet[C]/The 8th Aeroacoustics Conference of American Institute of Aeronautics and Astronautics . Atlanta,GA,1983.
    [39] MANKBADI R,LIU J T C. Sound generated aerody-namically revisited:large-scale structures in a turbu-lent jet as a source of sound[J]. Philosophical Trans-actions of the Royal Society(Series A),1984,311 (15/16):183-217.
    [40] 孙江龙. 绕潜艇三维厚边界层计算和二维自由面波动研究[D]. 武汉:华中科技大学,2006.
    [41] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Soci-ety of London (Series A),1955,231(1187): 505-514.
    [42] FFOWCS-WILLIAMS J E,HALL L H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane[J]. Journal of Fluid Mechanics, 1970,40(4):657-670.
    [43] WANG M,MOIN P. Computation of trailing-edge flow and noise using large-eddy simulation[J]. AIAA Journal,2000,38(12):2201-2209.
    [44] HOWE M S. Trailing edge noise at low Mach numbers[J]. Journal of Sound and Vibration,1999,225(2): 211-238.
    [45] LOWSON M V. The sound field for singularities in motion[J]. Proceedings of the Royal Society(Series A),1965,286(1407):559-572.
    [46] LOWSON M V,OLLERHEAD J B. A theoretical study of helicopter rotor noise[J]. Journal of Sound and Vibration,1969,9(2):197-222.
    [47] LOWSON M V. Theoretical analysis of compressor noise[J]. The Journal of the Acoustical Society of America,1970,47:371-385.
    [48] GOLDSTEIN M. Unified approach to aerodynamic sound generation in the presence of solid boundaries[J]. The Journal of the Acoustical Society of America, 1974,56(2):497-509.
    [49] HOWE M S. The damping of sound by wall turbulent shear layers[J]. The Journal of the Acoustical Society of America,1995,98(3):1723-1730.
    [50] SHARIFF K,WANG M. A numerical experiment to determine whether surface shear-stress fluctuations are a true sound source[J]. Physics of Fluids,2005, 17(10):105-107.
    [51] HU Z W,MORFEY C L,SANDHAM N D. Sound radi-ation in turbulent channel flows[J]. Journal of Fluid Mechanics,2003,475:269-302.
    [52] 俞孟萨,吴有生,庞业珍. 国外舰船水动力噪声研究进展概述[J]. 船舶力学,2007,11(1):152-158. YU Mengsa,WU Yousheng,PANG Yezhen. A review of progress for hydrodynamic noise of ships[J]. Jour-nal of Ship Mechanics,2007,11(1):152-158.
    [53] KRAICHNAN R H. Pressure fluctuations in turbulent flow over a flat plate[J]. The Journal of the Acousti-cal Society of America,1956,28(3):378-390.
    [54] CORCOS G M. The structure of the turbulent pressure field in boundary-layer flows[J]. Journal of Fluid Me-chanics,1964,18(3):353-378.
    [55] CORCOS G M. The resolution of turbulent pressures at the wall of a boundary layer[J]. Journal of Sound and Vibration,1967,6(1):59-70.
    [56] FFOWCS-WILLIAMS J E. Boundary-layer pressures and the Corcos model:a development to incorporate low-wavenumber constraints[J]. Journal of Fluid Me-chanics,1982,125:9-25.
    [57] CHASE D M. Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure[J]. Journal of Sound and Vibration,1980,70(1): 29-67.
    [58] CHASE D M. The character of the turbulent wall pres-sure spectrum at subconvective wavenumbers and a suggested comprehensive model[J]. Journal of Sound and Vibration,1987,112(1):125-147.
    [59] MARTIN N C,LEEHEY P. Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter[J]. Journal of Sound and Vibration, 1977,52(1):95-120.
    [60] HOWE M S. The turbulent boundary-layer roughwall pressure spectrum at acoustic and subconvective wave numbers[J]. Proceedings of Royal Society of London(Series A),1988,415(1848):141-161.
    [61] SMOL'YAKOV A V,TKACHENKO V M. Measure-ment of turbulent fluctuations[M]/BRADSHAW P. The measurement of turbulent fluctuations. Berlin: Springer,1983:46-128.
    [62] MELLEN R H. On modeling convective turbulence[J]. The Journal of the Acoustical Society of America, 1990,88(6):2891-2893.
    [63] DHANAK M R. Turbulent boundary layer on a circu-lar cylinder:the low-wavenumber surface pressure spectrum due to a low-Mach-number flow[J]. Jour-nal of Fluid Mechanics,1988,191:443-464.
    [64] DOWLING A P. Flow-acoustic interaction near a flex-ible wall[J]. Journal of Fluid Mechanics,1983,128: 181-198.
    [65] PHILLIPS O M. The intensity of Aeolian tones[J]. Journal of Fluid Mechanics,1956,1:607-624.
    [66] ROSS D. Vortex-shedding sound of propellers: AD0435764[R]. 1964-03-16.
    [67] ROSS D. Mechanics of underwater noise[M]. Oxford: Pergamon Press,1976.
    [68] KEMP N H,SEARS W R. Aerodynamic interference between moving blade rows[J]. Journal of the Aero-nautical Sciences,1953,20(9):585-597.
    [69] KEMP N H,SEARS W R. The unsteady forces due to viscous wakes in turbomachines[J]. Journal of the Aeronautical Sciences,1955,22(7):478-483.
    [70] SHARLAND I J. Sources of noise in axial flow fans[J]. Journal of Sound and Vibration,1964,1(3): 302-322.
    [71] LOWSON M V. Reduction of compressor noise radia-tion[J]. The Journal of the Acoustical Society of America,1968,43(1):37-50.
    [72] HANSON D B. Spectrum of rotor noise caused by in-let guide vane wakes[J]. The Journal of the Acousti-cal Society of America,1974,55(6):1247-1251.
    [73] 朱锡清,吴武生. 水下高速航行体对转螺旋桨线谱噪声预报研究[J]. 声学学报,1998,23(2): 123-133. ZHU Xiqing,WU Wusheng. Prediction of line-spec-trum noise induced by high speed vehicle counter-ro-tation propellers in water[J]. Acta Acustica,1998,23 (2):123-133.
    [74] 朱锡清,吴武生. 螺旋桨负荷噪声研究[J]. 声学学报,1999,24(3):259-268. ZHU Xiqing,WU Wusheng. Prediction of marine pro-peller loading noise[J]. Acta Acustica,1999,24(3): 259-268.
    [75] 朱锡清,唐登海,孙红星,等. 船舶螺旋桨低频噪声研究[J]. 船舶力学,2000,4(1):50-55.
    [76] 孙红星,朱锡清. 螺旋桨离散谱噪声计算研究[J]. 船舶力学,2003,7(4):105-109. SUN Hongxing,ZHU Xiqing. Study on discrete noise induced by marine propeller[J]. Journal of Ship Me-chanics,2003,7(4):105-109.
    [77] HANSON D B. Near-field frequency-domain theory for propeller noise[J]. AIAA Journal,1985,23(4): 499-504.
    [78] 杨兵,王同庆. 螺旋桨定常载荷噪声频域计算的新方法[C]/第十届船舶水下噪声学术讨论会论文集. 无锡:中国造船工程学会船舶力学学术委员会, 2005.
    [79] ABRAHAMSSON M,JOHANSSON M. Analysis of pressure pulses generated in a waterjet propulsion unit[D]. Sweden:Chalmers University of Technology, 1998.
    [80] KAJI S,OKAZAKI T. Generation of sound by ro-tor-stator interaction[J]. Journal of Sound and Vibra-tion,1970,13(3):281-307.
    [81] MANI R. Discrete frequency noise generation from an axial flow fan blade row[J]. Journal of Basic Engi-neering,1970,92(1):37-43.
    [82] LIPSTEIN N J,MANI R. Experimental investigation of discrete frequency noise generated by unsteady blade forces[J]. Journal of Basic Engineering,1970, 92(1):155-164.
    [83] HETHERINGTON R. Compressor noise generated by fluctuating lift resulting from rotor-stator interaction[J]. AIAA Journal,1963,1(2):473-474.
    [84] WRIGHT S E. The acoustic spetrum of axial flow ma-chines[J]. Journal of Sound and Vibration,1976,45 (2):165-223.
    [85] SEARS W R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences,1941,8(3):104-108.
    [86] TYLER J M,SOFRIN T G. Axial flow compressor noise studies[R/OL].(1962-01-01)[2015-04-23]. http://papers.sae.org/620532/. doi: 10.4271/620532.
    [87] BENZAKEIN M. Fan /compressor noise research: AD-740513.[R].[S.l.:s.n.],1971.
    [88] NAMBA M. Three-dimensional analysis of blade force and sound generation for an annular cascade in distorted flows[J]. Journal of Sound and Vibration, 1977,50(4):479-508.
    [89] KOBAYASHI H. Three dimensional effects on pure tone fan noise due to inflow distortion[C]/AIAA 11th Fluid and Plasma Dynamics Conference. Seattle, Washington,1978.
    [90] ROCKWELL D,NAUDASCHER E. Review-self-sus-taining oscillations of flow past cavities[J]. Journal of Fluids Engineering,1978,100(2):152-165.
    [91] COLONIUS T. An overview of simulation,modeling, and active control of flow acoustic resonance in open cavities[C]/The 39th Aerospace Sciences Meeting and Exhibit. Reno,NV:2001:8-11,21.
    [92] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds:RAE 64037[R]. 1964-10-31.
    [93] LAFON P,CAILLAUD S,DEVOS J P,et al. Aero-acoustical coupling in a ducted shallow cavity and flu-id/structure effects on a steam line[J]. Journal of Flu-ids and Structures,2003,18(6):695-713.
    [94] BILANIN A J,COVERT E. Estimation of possible ex-citation frequencies for shallow rectangular cavities[J]. AIAA Journal,1973,11(3):347-351.
    [95] FAURE T M,ADRIANOS P,LUSSEYRAN F,et al. Visualizations of the flow inside an open cavity at me-dium range Reynolds numbers[J]. Experiments in Fluids,2007,42(2):169-184.
    [96] HASSAN M E,LABRAGA L,KEIRSBULCK L. Aero-acoustic oscillations inside large deep cavities[C]/JACOBS P,MCINTYRE T,CLEARY M,et al. 16th Australasian Fluid Mechanics Conference (AFMC).Queensland,Australia,2007.
    [97] MEGANATHAN A J,VAKILI A D. An experimental study of open cavity flows at low subsonic speeds[C]/The 40th AIAA Aerospace Sciences Meeting & Exhibit,2002.
    [98] FRANKE M E,CARR D L. Effect of geometry on open cavity flow-induced pressure oscillations[C]/AIAA Second Aero-Acoustics Conference. Hampton, Virginia:AIAA,1975:75-492.
    [99] KOMERATH N M,AHUJA K K,CHAMBERS F W. Prediction and measurement of flows over cavities—a survey[C]/Proceedings of the AIAA 25th Aerospace Sciences Meeting. Reno,Nevada,1987.
    [100] CHOKANI N. Flow induced oscillations in cavities— a critical survey:DGLR/AIAA 92-02-159[R].[S. l.:s.n.]1992.
    [101] 罗柏华,胡章伟. 流体诱导空腔振荡及其声激励抑制的试验研究[J]. 南京航空航天大学学报,1996, 28(3):331-336. LUO Baihua,HU Zhangwei. Experimental study of flow induced cavity oscillation and its suppression by sound excitation[J]. Transactions of Nanjing Uni-versity of Aeronautics & Astronautics,1996,28(3): 331-336.
    [102] COLONIUS T. Modeling artificial boundary condi-tions for compressible flow[J]. Annual Review of Fluid Mechanics,2004,36:315-345.
    [103] MITCHELL B E,LELE S K. MOIN P. Direct compu-tation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics,1995, 285:181-202.
    [104] INOUE O,HATTORI Y,SASAKI T. Sound genera-tion by coaxial collision of two vortex rings[J]. Jour-nal of Fluid Mechanics,2000,424:327-365.
    [105] RAN H Y,COLONIUS T. Numerical simulation of sound radiated from a turbulent vortex ring[C]/The 10th AIAA/CEAS Aeroacoustics Conference,2004: 2004-2918.
    [106] FREUND J B,LELE S K,MOIN P. Numerical simu-lation of a Mach 1.92 turbulent jet and its sound field[J]. AIAA Journal,2000,38(11):2023-2031.
    [107] FREUND J B. Noise sources in a low-Reyn-olds-number turbulent jet at Mach 0.9[J]. Journal of Fluid Mechanics,2001,438:277-305.
    [108] MOIN P. Advances in large eddy simulation method-ology for complex flows[J]. International Journal of Heat and Fluid Flow,2002,23(5):710-720.
    [109] BLAKE W K. A statistical description of pressure and velocity fields at the trailing edges of a flat strut: ADA028771[R].[S.l.:s.n.],1975.
    [110] WANG M,MOREAU S,IACCARINO G,et al. LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil[J]. International Journal of Aero-ZHU Xiqing,TANG Denghai,SUN Hongxing,et al. Study of low frequency noise induced by propeller[J]. Journal of Ship Mechanics,2000,4(1):50-55.
    [111] BOGEY C,BAILLY C,JUVÉ D. Noise investigation of a high subsonic,moderate Reynolds number jet using a compressible large eddy simulation[J]. The-oretical and Computational Fluid Dynamics,2003, 16(4):273-297.
    [112] BOGEY C,BAILLY C. Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling[J]. AIAA Journal,2005,43(2):437-439.
    [113] PIOMELLI U,STREETT C,SARKAR S. On the computation of sound by large-eddy simulations[J]. Journal of Engineering Mathematics,1997,32(2/3): 217-236.
    [114] SEROR C,SAGAUT P,BAILLY C,et al. Sub-grid-scale contribution to noise production in decay-ing isotropic turbulence[J]. AIAA Journal,2000,38 (10):1795-1803.
    [115] HE G W,WANG M,LELE S K. On the computation of space-time correlations by large-eddy simulation[J]. Physics of Fluids,2004,16(11):3859-3867.
    [116] 孟堃宇. 基于大涡模拟的潜艇脉动压力与流噪声性能数值计算[D]. 上海:上海交通大学,2011.
    [117] 张允,傅慧萍,缪国平. 基于大涡模拟的开孔潜体流噪声数值模拟[J]. 上海交通大学学报,2011,45 (12):1868-1873. ZHANG Yun, FU Huiping, MIAO Guoping. LES-based numerical simulation of flow noise for submerged body with cavities[J]. Journal of Shang-hai Jiaotong University,2011,45(12):1868-1873.
    [118] DEARDORFF J W. A numerical study of three-di-mensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics,1970,41 (2):453-480.
    [119] WANG M,MOIN P. Dynamic wall modeling for large-eddy simulation of complex turbulent flows[J]. Physics of Fluids,2002,14(7):2043-2051.
    [120] SPALART P R,JOU W H,STRELETS M,et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[C]/Advances in DNS/LES,Conference of 1st AFOSR on DNS/LES. Columbus:Greyden Press,1997.
    [121] HEDGES L S,TRAVIN A K,SPALART P R. De-tached-eddy simulations over a simplified landing gear[J]. Journal of Fluids Engineering,2002,124 (2):413-423.
  • [1] 张磊, 周志勇, 张雨新, 黄少锋.  基于数值模拟的螺旋桨吸气及水动力性能研究 . 中国舰船研究, 2020, 15(5): 96-101, 113. doi: 10.19693/j.issn.1673-3185.01719
    [2] 赵存生, 韩小溪, 崔哲.  离心泵口环间隙流动特性的数值模拟 . 中国舰船研究, 2020, 15(4): 159-167. doi: 10.19693/j.issn.1673-3185.01806
    [3] 李亚, 刘忠族, 许影博, 张楠.  离心风机流场大涡模拟与管中噪声数值预报 . 中国舰船研究, 2019, 14(4): 91-97,154. doi: 10.19693/j.issn.1673-3185.01401
    [4] 蔡标华, 肖龙洲, 方超, 秦子明, 石兆存.  水下吹除排污过程气体射流噪声数值模拟 . 中国舰船研究, 2019, 14(6): 98-103. doi: 10.19693/j.issn.1673-3185.01541
    [5] 张斐, 张春辉, 张磊, 王志军, 周春桂.  多次水下爆炸作用下钢板动态响应数值模拟 . 中国舰船研究, 2019, 14(6): 122-129. doi: 10.19693/j.issn.1673-3185.01431
    [6] 董九亭, 刘建湖, 汪俊, 刘国振.  水下爆炸下舰艇不同部位冲击环境数值分析 . 中国舰船研究, 2018, 13(5): 32-38. doi: 10.19693/j.issn.1673-3185.01139
    [7] 郉军华, 尚大晶, 张成, 苗天丞.  轴对称直喷管的水下射流噪声特性数值模拟与实验验证 . 中国舰船研究, 2017, 12(6): 49-53. doi: 10.3969/j.issn.1673-3185.2017.06.008
    [8] 张沛心, 李良碧.  残余应力对水下耐压结构典型焊接接头疲劳强度的影响 . 中国舰船研究, 2015, 10(1): 51-57,67. doi: 10.3969/j.issn.1673-3185.2015.01.008
    [9] 郭昂, 郭卫杰, 王驰明, 封海宝.  船舶机舱机械通风数值模拟分析和优化设计 . 中国舰船研究, 2014, 9(3): 93-98. doi: 10.3969/j.issn.1673-3185.2014.03.014
    [10] 张瑶, 杨怀德, 江山, 喻萌.  半开式径向叶轮上游预旋流动研究 . 中国舰船研究, 2014, 9(4): 120-126. doi: 10.3969/j.issn.1673-3185.2014.04.020
    [11] 何庆林, 卢晶, 杨大鹏.  舰载飞机发动机尾流场数值模拟 . 中国舰船研究, 2013, 8(5): 13-18,51. doi: 10.3969/j.issn.1673-3185.2013.05.003
    [12] 王冶, 徐筱欣.  船用换热器三维流场数值模拟 . 中国舰船研究, 2013, 8(4): 79-85. doi: 10.3969/j.issn.1673-3185.2013.04.014
    [13] 李伟光, 李安邦, 徐新华, 施红梅.  基于数值模拟的复杂船舶围壁传热计算 . 中国舰船研究, 2013, 8(6): 85-90. doi: 10.3969/j.issn.1673-3185.2013.06.015
    [14] 王诗平, 张阿漫, 程潇欧, 姚熊亮, 陈海龙.  水面舰船附近气泡运动数值模拟 . 中国舰船研究, 2012, 7(5): 43-49. doi: 10.3969/j.issn.1673-3185.2012.05.008
    [15] 张营川, 马骏.  螺旋桨旋涡发放数值模拟 . 中国舰船研究, 2011, 6(5): 55-62. doi: 10.3969/J.issn.16733185.2011.05.012
    [16] 刘明静, 马运义, 吴军.  潜艇艏舵绕流场的数值模拟 . 中国舰船研究, 2010, 5(5): 40-43. doi: 10.3969/j.issn.1673-3185.2010.05.008
    [17] 曲飞, 陆超, 姜治芳, 王涛.  舰船舰面空气流场的CFD数值模拟探讨 . 中国舰船研究, 2009, 4(5): 23-27. doi: 10.3969/j.issn.1673-3185.2009.05.005
    [18] 姚熊亮, 于秀波, 张阿漫, 陈娟.  基于SPH方法的水下爆炸初始爆轰过程研究 . 中国舰船研究, 2008, 3(2): 7-10. doi: 10.3969/j.issn.1673-3185.2008.02.003
    [19] 孙荣, 吴晓光, 姜治芳, 吴启锐, 卢晓晖.  带自由面船体绕流场数值模拟 . 中国舰船研究, 2008, 3(2): 1-03. doi: 10.3969/j.issn.1673-3185.2008.02.001
    [20] 李再承, 侯国祥, 吴崇健.  管系湍流噪声辐射研究方法进展 . 中国舰船研究, 2007, 2(1): 34-38. doi: 10.3969/j.issn.1673-3185.2007.01.007
  • 加载中
计量
  • 文章访问数:  431
  • HTML全文浏览量:  4
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-19
  • 刊出日期:  2016-01-20

流致噪声机理及预报方法研究综述

doi: 10.3969/j.issn.1673-3185.2016.01.008
    基金项目:  国家部委基金资助项目
    通讯作者: 王春旭(通信作者),男,1981年生,博士,高级工程师。研究方向:潜艇声隐身技术。E-mail:260848719@qq.com
  • 中图分类号: U661.44

摘要: 从自由湍流噪声、壁面湍流噪声、转子噪声和空腔流动4 个方面对流致噪声机理及预报方法进行综述。对目前工程应用中的3个主要流致噪声预报方法,即Lighthill声比拟理论、Kirchhoff方法和涡声理论的基本原理及适用性进行详细讨论,并对流致噪声数值模拟方法进行总结。其中,Lighthill声比拟理论属噪声源先验理论,虽方便应用但不能描述声流相互作用基础问题;Kirchhoff方法在运用的过程中虽不需要确切获知源的属性,但声源区的计算精度很重要;涡声理论在声流相互作用等领域有着良好的研究前景。自由湍流噪声以四极子雷诺应力源为主,存在如螺旋桨等固壁边界时则会产生偶极子源,在低马赫数流动中是更为有效的声源。

English Abstract

王春旭, 吴崇建, 陈乐佳, 邱昌林, 熊济时. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
引用本文: 王春旭, 吴崇建, 陈乐佳, 邱昌林, 熊济时. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
WANG Chunxu, WU Chongjian, CHEN Lejia, QIU Changlin, XIONG Jishi. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
Citation: WANG Chunxu, WU Chongjian, CHEN Lejia, QIU Changlin, XIONG Jishi. A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11(1): 57-71. doi: 10.3969/j.issn.1673-3185.2016.01.008
参考文献 (121)

目录

    /

    返回文章
    返回