留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船体结构砰击总体载荷理论研究综述

汪雪良 杨鹏 顾学康 胡嘉骏

汪雪良, 杨鹏, 顾学康, 胡嘉骏. 船体结构砰击总体载荷理论研究综述[J]. 中国舰船研究, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
引用本文: 汪雪良, 杨鹏, 顾学康, 胡嘉骏. 船体结构砰击总体载荷理论研究综述[J]. 中国舰船研究, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
WANG Xueliang, YANG Peng, GU Xuekang, HU Jiajun. Review of the Theoretical Investigation of Slamming of Global Wave Loadson Ship Structures[J]. Chinese Journal of Ship Research, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
Citation: WANG Xueliang, YANG Peng, GU Xuekang, HU Jiajun. Review of the Theoretical Investigation of Slamming of Global Wave Loadson Ship Structures[J]. Chinese Journal of Ship Research, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002

船体结构砰击总体载荷理论研究综述

doi: 10.3969/j.issn.1673-3185.2015.01.002
基金项目: 国家部委基金资助项目
详细信息
    作者简介:

    汪雪良(通信作者), 男, 1977年生, 博士, 高级工程师。研究方向: 船舶与海洋结构物波浪载荷。

  • 中图分类号: U661.4 

Review of the Theoretical Investigation of Slamming of Global Wave Loadson Ship Structures

More Information
    Author Bio:

    WANG Xueliang

    Corresponding author: 汪雪良
  • 摘要: 船体结构遭受的波浪砰击载荷是一种强非线性的流体与结构之间的相互作用。砰击将导致船体主要按其两节点湿谐振频率发生振动,这种船体梁的总振动即为颤振。它往往引起船体结构的极限强度问题和疲劳损伤问题,这两种问题在船舶结构设计领域不可回避。从理论研究方面对船舶的砰击总体载荷进行综述,分析二维理论和三维理论在预报船体结构砰击总体载荷方面的优缺点。分析表明:虽然二维理论在该领域的应用已超过50年,但理论中基本假设和数学模型的局限性制约了其在肥大型船、多体船和海洋平台等领域的广泛应用;三维理论能突破二维理论的基本假设和数学模型的局限性,能在更加广泛的工程领域内得到应用。考虑外飘等非线性影响的三维时域水弹性理论能更加精确地预报砰击载荷,是船体结构砰击总体载荷理论研究的重要发展方向之一。
  • [1] DRUMMEN I,STORHAUG G,MOAN T. Experimental and numerical investigation of fatigue damage due to wave-induced vibrations in a containership in head seas[J]. Journal of Marine Science and Technology,2008,13(4):428-445.
    [2] STORHAUG G. Which sea states are dimensioning for container vessels when whipping is included?[C]// Proceeding of the ASME 2014 33rd International Conference on Ocean,Offshore and Arctic Engineering,OMAE2014. New York:American Society of Mechanical Engineers,2014.
    [3] Committee on Large Container Ship Safety. Interim report of committee on large container ship safety[R]. Tokyo :Committee on Large Container Ship Safety ,2013.
    [4] XING J T,SHENG Z,CUI E J. Overview of fluid structure interaction mechanics[J]. Advances in Mechanics,1997,27:19-38.
    [5] KORVIN-KROUKOVSKY B V,JACOBS W R. Pitching and heaving motions of ship in regular waves,AD0134053 [R]. [S.l.]:Stevens Inst of Tech Hoboken NJ Experimental Towing Tank,1957.
    [6] SALVESEN N,TUCK E O,FALTINSEN O. Ship motions and sea loads[M]. Oslo:Det Norske Veritas,1971.
    [7] FALTINSEN O M,LANDRINI M,GRECO M. Slamming in marine applications[J]. Journal of Engineering Mathematics,2004,48(3/4):187-217.
    [8] BISHOP R E D , PRICE W G. The generalized antisymmetric fluid forces applied to a ship in a seaway[J]. International Shipbuilding Progress,1977,24(269):3-14.
    [9] BISHOP R E D,PRICE W G. Hydroelasticity of ships[M]. London:Cambridge University Press,1979.
    [10] BELIK O,BISHOP R E D,PRICE W G. On the slamming response of ships to regular head waves[J]. Transactions of the Royal Institution of Naval Architects,1980,122:325-337.
    [11] BELIK O ,PRICE W G. Comparison of slamming theories in the time simulation of ship responses in irregular waves[J]. International Shipbuilding Progress,1982,29:173-187.
    [12] CLARKE J D. Wave loading in warships[C]//Advances in Marine Structures. [S.l.]:Elsevier Applied Science Publishers,1986:1-25.
    [13] YAMAMOTO Y,FUJINO M,FUKASAWA T,et al. Slamming and whipping of ships among rough seas in numerical analysis of the dynamics of ship structures[C]//Proceedings of Euromech Colloquium. Paris,1979.
    [14] YAMAMOTO Y,SUGAI K,INOUE H,et al. Wave loads and response of ships and offshore structures from the viewpoint of hydroelasticity[C]//Advances in Marine Structures Conference. Dunfermline,Scotland,1986.
    [15] WU M K,MOAN T. Linear and nonlinear hydroelastic analysis of high-speed vessels[J]. Journal of Ship Research,1996,40(2):149-163.
    [16] GU M X,WU Y S,XIA J Z. Time domain analysis of non-linear hydroelastic response of ships[C]//Proceeding of the 4th International Symposium on Practical Design of Ships and other Floating Strucures. Varna,Bulgaria,1989.
    [17] SODING H. Leckstabilitate in seegang,Report 429 [R]. Hamburg: Institute fur Schiffbau Hamburg,1982.
    [18] XIA J,WANG Z. Time domain hydroelasticity theory of ships responding to waves[J]. Journal of Ship Research,1997,41(4):286-300.
    [19] XIA J,WANG Z,JENSEN J J. Non-linear wave loads and ship responses by a time-domain strip theory[J]. Marine Structures,1998,11(3):101-123.
    [20] WATANABE I,UENO M,SAWADA H. Effects of bow flare shape to the wave loads of a container ship[J]. Journal of the Society of Naval Architecture of Japan,1989,166:259-266.
    [21] 任慧龙. 非线性波浪载荷与船体极限强度[D]. 哈尔滨:哈尔滨工程大学,1995.
    [22] FALTINSEN O M. The effect of hydroelasticity on ship slamming[J]. Philosophical Transactions of the Royal Society of London:Series A,1997,355(1724):575-591.
    [23] PARK S W,LEE J K,OH S H,et al. Whipping analysis of ship hulls considering slamming impact loads[C]//Proceedings of the Thirteenth International Offshore and Polar Engineering Conference. Honolulu,Hawaii,USA,2003:2799-2805.
    [24] GU X K,SHEN J W,MOAN T. Efficient and simplified time domain simulation of nonlinear responses of ships in waves[J]. Journal of Ship Research,2003,47(3):262-273.
    [25] FALTINSEN O M,LANDRINI M,GRECO M. Slamming in marine applications[J]. Journal of Engineering Mathematics,2004,48(3/4):187-217.
    [26] HERMUNDSTAD O A,MOAN T. Numerical and experimental analysis of bow flare slamming on a Ro-Ro vessel in regular oblique waves[J]. Journal of Marine Science and Technology,2005,10(3):105-122.
    [27] EL MOCTAR O,SCHELLIN T E,PRIEBE T. CFD and FE methods to predict wave loads and ship structural response[C]// Proceedings of the 26th Symposium on Naval Hydrodynamics. Rome,Italy,2006:17-22.
    [28] SCHELLIN T E,EL MOCTAR O. Numerical prediction of impact-related wave loads on ships[J]. Journal of Offshore Mechanics and Arctic Engineering,2007,129 (1):39-47.
    [29] OBERHAGEMANN J,HOLTMANN M,EL MOCTAR O,et al. Stern slamming of a LNG carrier[J]. Journal of Offshore Mechanics and Arctic Engineering,2009,131 (3):0310031-0310039.
    [30] HERMUNDSTAD O A,MOAN T. Efficient calculation of slamming pressures on ships in irregular seas[J]. Journal of Marine Science and Technology,2007,12(3):160-182.
    [31] ZHAO R,FALTINSEN O M,AARSNES J V. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium of Naval Hydrodynamics. Trondheim,1996:408-423.
    [32] WANG X L,HU J J,GU X K,et al. Wave loads investigation of a VLCC by experimental and theoretical methods[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean,Offshore and Arctic Engineering. San Francisco,California,USA,2014:V08AT06A008.
    [33] WU M K,HERMUNDSTAD O A. Time-domain simulation of wave-induced nonlinear motions and loads and its applications in ship design[J]. Marine Structures,2002,15(6):561-597.
    [34] O'DEA J,POWERS E,ZSELECSKY J. Experimental determination of nonlinearities in vertical plane ship motions[C]//Proceedings of 19th Symposium on Naval Hydrodynamics. Washington D C:National Academy Press,1994.
    [35] LIN W M,MEINHOLD M,SALVESEN N,et al. Large-amplitude motions and wave loads for ship design[C]//Proceedings of 20th Symposium on Naval Hydrodynamics. Santa Barbara,US,1996.
    [36] WU M K,MOAN T. Efficient calculation of wave-induced ship responses considering structural dynamic effects[J]. Applied Ocean Research,2005,27(2):81-96.
    [37] FONSECA N,GUEDES S C. Comparison of numerical and experimental results of nonlinear wave-induced vertical ship motions and loads[J]. Journal of Marine Science and Technology,2002,6(4):193-204.
    [38] JENSEN J J,DOGLIANI M. Wave-induced ship hull vibrations in stochastic seaways[J]. Marine Structures,1996,9(3):353-387.
    [39] STORHAUG G. Experimental investigation of wave induced vibrations increasing fatigue damage in ships[D]. Trondheim:Norwegian University of Science and Technology, 2007.
    [40] VIDIC-PERUNOVIC J. Springing response due to bidirectional wave excitation[D]. Lyngby:Technical University of Denmark, 2005.
    [41] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge:Cambridge University Press,1990.
    [42] FARNES K A. Long-term statistics of response in non-linear marine structures[D]. Trondheim :Norwegian University of Science and Technology,1990 .
    [43] ISSC. Report of special task committee VI.1:Extreme hull girder loading[C]//Proceedings of 14th International Ship and Offshore Structures Congress. Nagasaki,Japan,2000.
    [44] GUEDES S C,FONSECA N,PASCOAL R. Long term prediction of non-linear vertical bending moments on a fast monohull[J]. Applied Ocean Research,2004,26(6):288-297.
    [45] FONSECA N,GUEDES C G. Non-linear wave induced responses of ships in irregular seas[C]//Proceedings of 17th International Conference on Offshore Mechanics and Arctic Engineering. Lisbon,Portugal,1998.
    [46] FONSECA N,GUEDES C G. Time-domain analysis of large-amplitude vertical ship motions and wave loads[J]. Journal of Ship Research,1998,42(2):139-153.
    [47] BAARHOLM G S,MOAN T. Estimation of nonlinear long-term extremes of hull girder loads in ships[J]. Marine Structures,2000,13(6):495-516.
    [48] WINTERSTEIN S R,UDE T C,CORNELL C A,et al. Environmental parameters for extreme response:Inverse form with omission factors[C]//Proceedings of 6th International Conference on Structural Safety and Reliability. Innsbruck,Austria,1993.
    [49] BAARHOLM G S,MOAN T. Application of contour line method to estimate extreme ship hull loads considering operational restrictions[J]. Journal of Ship Research,2001,45(3):228-240.
    [50] BAARHOLM G S,JENSEN J J. Influence of whipping on long-term vertical bending moment[J]. Journal of Ship Research,2004,28(4):261-272.
    [51] WU Y S. Hydroelasticity of floating bodies[D]. London: Brunel University,1984.
    [52] PRICE W G,WU Y S. Structural responses of a SWATH or multi-hull vessel travelling in waves[C]//International Conference on SWATH Ships and Advanced Multi-Hulled Vessels. London :RINA,1985.
    [53] WU Y S. A general interface boundary condition[R]. Wuxi:China Ship Scientific Research Center,1990.
    [54] TIMMAN R,NEWMAN J N. The coupled damping coefficients of symmetric ships[J]. Journal of Ship Research,1962,5(4):34-55.
    [55] 杜双兴. 海洋浮体结构的直接分析方法——三维线性水弹性随机分析理论及应用[D]. 无锡:中国船舶科学研究中心,1990.
    [56] DU S X,WU Y S. A fast evaluation method and a dynamic mode refinement method in hydroelastic analysis of marine structures[R].Wuxi:China Ship Scientific Research Center,1993.
    [57] 杜双兴. 完善的三维航行船体线性水弹性力学频域分析方法[D]. 无锡:中国船舶科学研究中心,1996.
    [58] WU Y S,MAEDA H,KINOSHITA T. The second order hydrodynamic actions on a flexible body[J]. Journal of Institute of Industrial Science of University of Tokyo,1997,49(4):8-19.
    [59] TIAN C,WU Y S. The non-linear hydroelastic responses of a ship travelling in waves[C]//Proceedings of Hydroelasticity in Marine Technology. UK,2006.
    [60] 田超. 航行船舶的非线性水弹性理论与应用研究[D].上海:上海交通大学,2007.
    [61] HIRDARIS S E,PRICE W G,TEMAREL P. Two- and three-dimensional hydroelastic modeling of a bulker in regular waves[J]. Marine Structures,2003,16(8) :627-658.
    [62] AKSU S,PRICE W G,TEMAREL P. A comparison of two-dimensional and three-dimensional hydroelasticity theories including the effect of slamming[J]. Proceedings of the Institution of Mechanical Engineers:Part C Journal of Mechanical Engineering Science,1991,205(1):3-15.
    [63] 王朝晖,夏锦祝,吴有生. 弹性船体波激响应时域过程的数值模拟[J]. 中国造船,1995(4):91-96. WANG Zhaohui,XIA Jinzhu,WU Yousheng. Time domain numerical simulation of wave-induced responses of elastic ships[J]. Shipbuilding of China,1995(4):91-96.
    [64] 王大云. 三维船舶水弹性力学的时域分析方法[D]. 无锡:中国船舶科学研究中心,1996.
    [65] WANG D Y,WU Y S. Three dimensional hydroelastic analysis in time domain with application to an elastic ship model[J]. Journal of Hydrodynamics:Ser. B,1998(4):54-61.
    [66] KASHIWAGI M. A time-domain mode-expansion method for calculating transient elastic responses of a pontoon-type VLFS[J]. Journal of Marine Science and Technology,2000,5(2):89-100.
    [67] 陈徐均. 浮体二阶非线性水弹性力学分析方法[D]. 无锡:中国船舶科学研究中心,2001.
    [68] 陈徐均. 超大型浮体的非线性水弹性分析[R]. 上海:上海交通大学,2003.
    [69] LIU X D,SAKA S. Time domain analysis on the dynamic response of a flexible floating structure to waves[J]. Journal of Engineering Mechanics,2002,128(1):48-56.
    [70] DOMINIC J,PIRO A. Hydroelastic method for the analysis of global ship response due to slamming events[D]. Ann Arbor:University of Michigan,2013.
    [71] BEREZNITSKI A,KAMINSKI M L. Practical implications of hydroelasticity in ship design[C]//Proceedings of 12th International Offshore and Polar Engineering Conference (ISOPE-2002). Kyushu,Japan,2002.
    [72] 袁罡. 江海直达船砰击引起的鞭击振动研究[D]. 武汉:武汉理工大学,2011.
    [73] 刘正国. 江海直达船砰击弯矩研究[D]. 武汉:武汉理工大学,2013.
    [74] EL MOCTAR O,OBERHAGEMANN J,SCHELLIN T E. Free surface RANS method for hull girder springing and whipping[C]// Proceedings of the SNAME Annual Meeting. Houston,TX,2011 .
    [75] 郑兴. 光滑质点流体动力学(SPH)算法研究[D]. 哈尔滨:哈尔滨工程大学,2005.
    [76] SUN F F. Investigations of smoothed particle hydrodynamics method for fluid-rigid body interactions[D]. Southampton:University of Southampton, 2013.
    [77] ZHAO R,FALTINSEN O,AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]// Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D C,USA,1996:408-423.
  • [1] 周强, 王青山, 钟锐.  阻振结构在甲板结构低频隔振中的应用研究 . 中国舰船研究, 2020, 15(5): 176-182. doi: 10.19693/j.issn.1673-3185.01671
    [2] 田阿利, 姚鹏, 傅梓轩, 赵元帅.  SPS覆层船艏局部加强结构的抗砰击性能仿真分析 . 中国舰船研究, 2020, 15(4): 59-65. doi: 10.19693/j.issn.1673-3185.01631
    [3] 徐志亭, 赵超, 王福花.  非线性砰击载荷对某大外飘型船舶疲劳损伤的影响 . 中国舰船研究, 2019, 14(6): 180-185. doi: 10.19693/j.issn.1673-3185.01491
    [4] 郭显亭, 徐立.  大型LNG运输船疲劳强度分析与关键区域控制 . 中国舰船研究, 2019, 14(Supp 2): 54-58. doi: 10.19693/j.issn.1673-3185.01964
    [5] 吴崇建, 蔡大明, 朱英富.  结构噪声核心价值与理论逻辑解读第二部分:阻振质量与复杂巨系统 . 中国舰船研究, 2018, 13(4): 1-6,32. doi: 10.19693/j.issn.1673-3185.01287
    [6] 吴梵, 滑林.  腐蚀、疲劳损伤下船体结构可靠性研究现状与展望 . 中国舰船研究, 2017, 12(5): 52-63. doi: 10.3969/j.issn.1673-3185.2017.05.007
    [7] 彭晟, 吴卫国, 夏子钰.  江海直达船艏部结构入水砰击试验 . 中国舰船研究, 2016, 11(4): 14-21. doi: 10.3969/j.issn.1673-3185.2016.04.003
    [8] 李增光.  推进轴系-船体结构低频弯曲振动耦合特性 . 中国舰船研究, 2016, 11(3): 74-78. doi: 10.3969/j.issn.1673-3185.2016.03.013
    [9] 肖清, 谢俊超, 陈东阳.  舵系统的颤振计算与分析 . 中国舰船研究, 2016, 11(5): 48-54. doi: 10.3969/j.issn.1673-3185.2016.05.008
    [10] 肖邵予, 汪浩, 阮竹青.  粘弹性阻尼材料减振性能试验评估方法 . 中国舰船研究, 2014, 9(4): 84-87. doi: 10.3969/j.issn.1673-3185.2014.04.013
    [11] 肖邵予, 汪浩.  某型Fabry-Perot光纤应变计的传感特性试验 . 中国舰船研究, 2014, 9(6): 43-47. doi: 10.3969/j.issn.1673-3185.2014.06.008
    [12] 宋一淇, 王佩瑜, 常守明, 符安邦.  基于FORAN的船体结构底层数据结构分析 . 中国舰船研究, 2014, 9(5): 26-32. doi: 10.3969/j.issn.1673-3185.2014.05.005
    [13] 刘正国, 吴卫国, 潘晋, 高丽莎.  基于船波相对运动的船艏砰击仿真方法 . 中国舰船研究, 2013, 8(6): 20-26. doi: 10.3969/j.issn.1673-3185.2013.06.004
    [14] 任慧龙, 翟帅帅, 于鹏垚, 李辉, 刘洋.  砰击载荷作用下船艏结构瞬态响应研究 . 中国舰船研究, 2013, 8(6): 14-19. doi: 10.3969/j.issn.1673-3185.2013.06.003
    [15] 徐力, 陈作钢.  船体艏部水动力性能优化 . 中国舰船研究, 2012, 7(2): 37-41,64. doi: 10.3969/j.issn.1673-3185.2012.02.007
    [16] 马丽君, 冯其, 张楠.  国外船舶破损稳性理论分析 . 中国舰船研究, 2012, 7(2): 9-13. doi: 10.3969/j.issn.1673-3185.2012.02.002
    [17] 陈震, 肖熙.  基于波面随机性的船舶底部砰击压力计算方法研究 . 中国舰船研究, 2011, 6(1): 7-11. doi: 10.3969/j.issn.1673-3185.2011.01.002
    [18] 张于维, 王志东, 晋文菊, 丛文超.  二维楔形体砰击载荷研究 . 中国舰船研究, 2010, 5(3): 34-37,46. doi: 10.3969/j.issn.1673-3185.2010.03.008
    [19] 李焱.  三维设计在船体结构中的应用 . 中国舰船研究, 2007, 2(1): 14-18. doi: 10.3969/j.issn.1673-3185.2007.01.003
    [20] 陈捷捷, 李焱, 吴波.  基于CADDS5和VB的三维船体结构重量重心及材料统计计算系统 . 中国舰船研究, 2007, 2(4): 51-55. doi: 10.3969/j.issn.1673-3185.2007.04.012
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  4
  • PDF下载量:  797
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-14
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-02-02

船体结构砰击总体载荷理论研究综述

doi: 10.3969/j.issn.1673-3185.2015.01.002
    基金项目:  国家部委基金资助项目
    作者简介:

    汪雪良(通信作者), 男, 1977年生, 博士, 高级工程师。研究方向: 船舶与海洋结构物波浪载荷。

  • 中图分类号: U661.4 

摘要: 船体结构遭受的波浪砰击载荷是一种强非线性的流体与结构之间的相互作用。砰击将导致船体主要按其两节点湿谐振频率发生振动,这种船体梁的总振动即为颤振。它往往引起船体结构的极限强度问题和疲劳损伤问题,这两种问题在船舶结构设计领域不可回避。从理论研究方面对船舶的砰击总体载荷进行综述,分析二维理论和三维理论在预报船体结构砰击总体载荷方面的优缺点。分析表明:虽然二维理论在该领域的应用已超过50年,但理论中基本假设和数学模型的局限性制约了其在肥大型船、多体船和海洋平台等领域的广泛应用;三维理论能突破二维理论的基本假设和数学模型的局限性,能在更加广泛的工程领域内得到应用。考虑外飘等非线性影响的三维时域水弹性理论能更加精确地预报砰击载荷,是船体结构砰击总体载荷理论研究的重要发展方向之一。

English Abstract

汪雪良, 杨鹏, 顾学康, 胡嘉骏. 船体结构砰击总体载荷理论研究综述[J]. 中国舰船研究, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
引用本文: 汪雪良, 杨鹏, 顾学康, 胡嘉骏. 船体结构砰击总体载荷理论研究综述[J]. 中国舰船研究, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
WANG Xueliang, YANG Peng, GU Xuekang, HU Jiajun. Review of the Theoretical Investigation of Slamming of Global Wave Loadson Ship Structures[J]. Chinese Journal of Ship Research, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
Citation: WANG Xueliang, YANG Peng, GU Xuekang, HU Jiajun. Review of the Theoretical Investigation of Slamming of Global Wave Loadson Ship Structures[J]. Chinese Journal of Ship Research, 2015, 10(1): 7-18. doi: 10.3969/j.issn.1673-3185.2015.01.002
参考文献 (77)

目录

    /

    返回文章
    返回