Damage characteristics of cylindrical shell structures subject to double UNDEX
-
摘要:
目的 旨在充分研究多种毁伤元对目标毁伤模式,分析双爆源水下爆炸对圆柱壳结构的毁伤效应。 方法 首先,建立圆柱壳有限元模型,采用任意拉格朗日−欧拉(ALE)方法对单/双爆源水下爆炸下圆柱壳的毁伤特性开展研究。然后,从破口面积、最大垂向位移和塑性应变区域面积等特征参数评价结构毁伤效果。 结果 计算结果表明,以500 kg TNT装药为例,对于间距为1 m的双爆源水下爆炸,等当量的双爆源相比单爆源的爆炸对圆柱壳外板会造成更严重的毁伤,但对圆柱壳内板的毁伤不如单爆源。对于间距大于3 m的双爆源水下爆炸,随着间距的增加,爆炸对圆柱壳结构的毁伤效果越弱。 结论 通过计算不同初始参数下水下爆炸对圆柱壳结构的毁伤,获取了单、双爆源水下爆炸对圆柱壳结构的毁伤规律,结果可为增强水下作战武器威力提供参考。 Abstract:Objective This paper aims to study the damage modes of the target simultaneously caused by multiple damage elements, and analyze the damage effect of the cylindrical shell subjected to the double underwater explosion (UNDEX). Methods First, a finite element model of cylindrical shell is established, and arbitrary Lagrangian-Eulerian(ALE) method is used to investigate the damage characteristics of cylindrical shell under underwater explosion of single or double explosion sources, and the damage effect is evaluated from the structural fracture area, the maximum vertical displacement of the structure and the area of the plastic strain area. Results Take 500 kg TNT charge as an example, the calculation results show that, when the spacing between two explosive sources is 1 m, the damage to the outer plate of the cylindrical shell is more serious when the double explosive source is equal to that of the single explosive source, but the damage to the inner plate of the cylindrical shell is less than that of the single explosive source. At the same time, with the increase of the distance between the two charges, especially when the distance is greater than 3 m, the damage effect on the cylindrical shell structure becomes weaker. Conclusions By calculating the damage to cylindrical shell structures by underwater explosion under different initial parameters, the general rules of damage to cylindrical shell structures by single and double explosion sources are given, which can provide reference for enhancing the power of underwater combat weapons. -
Key words:
- underwater explosion /
- structural damage /
- bubble /
- shockwave /
- dual explosive sources
-
图 4 ALE方法与Zhang方程[25]的气泡脉动时历曲线对比
Figure 4. Comparison of bubble pulsation time history between ALE and Zhang's equation
表 1 水状态方程参数
Table 1. EOS parameters of water
参数 数值 ρw/(kg·m−3) 1 000 c/m·s−1 1 480 S1 2.56 S2 −1.98 6 S3 0.226 8 γ0 0.5 α 2.67 E/(J·m−3) 30 700 V 1 表 2 空气状态方程参数
Table 2. EOS parameters of air
参数 数值 ρa/(kg·m−3) 1 C0=C1=C2=C3=C6 0 C4 0.4 C5 0.4 E/(J·m−3) 222 500 V 1 表 3 TNT炸药JWL状态方程参数
Table 3. JWL EOS parameters of TNT explosive
参数 数值 ρTNT/(kg·m−3) 1 630 D/(m·s−1) 6 930 Pcj/GPa 21 A/GPa 371.2 B/GPa 3.21 R1 4.15 R2 0.95 ω 0.3 E/(GJ·m−3) 7.0 表 4 不同网格尺寸下冲击波载荷ALE方法计算峰值与Zhang方程[25]理论峰值对比
Table 4. Comparison of calculated shockwave peak loads by different element sizes with ALE and Zhang’s equation[25]
网格尺寸
/mALE方法计算峰值
/MPaZhang方程[25]理论峰值
/MPa相对误差
/%0.10 56.12 56.40 0.50 0.15 55.16 1.61 0.20 51.18 9.26 0.40 18.16 13.8 表 5 ALE方法与Zhang方程[25]计算的冲击波载荷峰值对比
Table 5. Comparison of shockwave peak loads calculated by ALE and Zhang's equation
爆距
/m冲击波载荷峰值/MPa 相对误差
/%Zhang 方程[25] ALE方法 7 66.64 65.23 2.12 8 56.40 55.49 1.61 9 48.09 46.25 3.83 10 42.35 40.39 4.63 表 6 试验结果与ALE计算结果比对
Table 6. Results comparison of the experiment and ALE simulation
装药类型 装药/g 爆距/m 加筋板变形挠度/mm 相对误差
/%试验结果[28] ALE结果 TNT 110 0.7 15.79 15.22 3.61 表 7 计算模型结构参数
Table 7. Structural parameters of calculation model
内壳 外壳 环肋 纵骨 舱壁 平台 板厚/mm 30 10 20 20 14 7 表 8 单爆源水下爆炸下圆柱壳毁伤特征参数
Table 8. Characteristic parameters of damage of cylindrical shell under single UNDEX
破口纵向
直径/m破口横向
直径/m垂向最大
位移/m塑性变形
面积/m2外板 5.28 5.86 4.16 48.32 板间骨架 6.36 5.26 9.50 47.31 内板 7.36 6.74 5.74 53.94 -
[1] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性[J]. 兵工学报, 2023, 44(3): 670–681.CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship's double bottom structure subjected to underwater explosion[J]. Acta Armamentarii, 2023, 44(3): 670–681(in Chinese). [2] 凌荣辉, 钱立新, 唐平, 等. 聚能型鱼雷战斗部对潜艇目标毁伤研究[J]. 弹道学报, 2001(2): 23–27.LING R H, QIAN L X, TANG P, et al. Target damage study of shaped-charge warhead of antisubmarine torpedo[J]. Journal of Ballistics, 2001(2): 23–27 (in Chinese). [3] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究[J]. 兵器装备工程学报, 2021, 42(12): 112–116.WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116 (in Chinese). [4] 张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18(3): 139–154. doi: 10.19693/j.issn.1673-3185.03273ZHANG A M, MING F R, LIU Y L, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18(3): 139–154 (in Chinese). doi: 10.19693/j.issn.1673-3185.03273 [5] 刘云龙, 王平平, 王诗平, 等. 水下爆炸作用下舰船冲击毁伤的瞬态流固耦合FSLAB软件数值模拟分析[J]. 中国舰船研究, 2022, 17(5): 228–240. doi: 10.19693/j.issn.1673-3185.02865LIU Y L, WANG P P, WANG S P, et al. Numerical analysis of transient fluid-structure interaction of warship impact damage caused by underwater explosion using the FSLAB[J]. Chinese Journal of Ship Research, 2022, 17(5): 228–240 (in Chinese). doi: 10.19693/j.issn.1673-3185.02865 [6] 彭玉祥, 张阿漫, 薛冰, 等. 强冲击作用下舰船结构毁伤的三维无网格 SPH-RKPM 方法数值模拟[J]. 中国科学: 物理学, 力学, 天文学, 2021, 51(12): 124614.PENG Y X, ZHANG A M, XUE B, et al. Numerical investigation of ship structure damage subject to strong impact using a 3D meshless SPH-RKPM method[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(12): 124614 (in Chinese). [7] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.ZHANG A M. 3D dynamic behavior of underwater explosion bubble[D]. Harbin: Harbin Engineering University, 2007(in Chinese). [8] 张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究[J]. 爆炸与冲击, 2004(2): 182–188.ZHANG Z H, ZHU X, BAI X F. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves, 2004(2): 182–188 (in Chinese). [9] 方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应[J]. 哈尔滨工程大学学报, 2008(4): 326–331.FANG B, ZHU X, ZHANG Z H. Plastic dynamic response of ship hull grillage to underwater blast loading[J]. Journal of Harbin Engineering University, 2008(4): 326–331 (in Chinese). [10] 胡振宇, 曹卓尔, 李帅, 等. 水中高压脉动气泡与浮体流固耦合特性研究[J]. 力学学报, 2021, 53(4): 944–961.HU Z Y, CAO Z E, LI S, et al. Fluid-structure interaction between a high-pressure pulsating bubble and a floating structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 944–961 (in Chinese). [11] LI S, ZHANG A M, HAN R, et al. Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission[J]. Ocean Engineering, 2019, 190: 106414. doi: 10.1016/j.oceaneng.2019.106414 [12] 李玉节, 张效慈, 吴有生, 等. 水下爆炸气泡激起的船体鞭状运动[J]. 中国造船, 2001, 42(3): 1–7. doi: 10.3969/j.issn.1000-4882.2001.03.001LI Y J, ZHANG X C, WU Y S, et al. Whipping response of ship hull induced by underwater explosion bubble[J]. Shipbuiding of China, 2001, 42(3): 1–7 (in Chinese). doi: 10.3969/j.issn.1000-4882.2001.03.001 [13] 郭志荣, 陆文俊, 金晓宇. 鱼雷爆炸作用下潜艇鞭状运动响应仿真分析[J]. 水下无人系统学报, 2021, 29(5): 609–615.GUO Z R, LUN W J, JIN X Y. Simulation analysis of the whipping response of a submarine subjected to the torpedo explosion[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 609–615 (in Chinese). [14] 王海坤, 刘建湖, 潘建强, 等. 水下爆炸载荷作用下细长体圆柱壳结构鞭状响应[J]. 噪声与振动控制, 2012, 32(6): 44–48.WANG H K, LIU J H, PAN J Q, et al. Whipping eesponse of slender cylindrical shell to underwater explosion[J]. Noise and Vibration Control, 2012, 32(6): 44–48 (in Chinese). [15] 武海军, 成乐乐, 陈文戈, 等. 典型舰船结构的水下爆炸耦合毁伤研究进展[J]. 北京理工大学学报, 2023, 43(5): 439–459.WU H J, CHENG L L, CHEN W G, et al. Review on coupling damage effects of underwater explosion on typical ship structures[J]. Transactions of Beijing Institute of Technology, 2023, 43(5): 439–459 (in Chinese). [16] 林尚剑, 王金相, 马腾, 等. 水下多点爆炸冲击波叠加效应研究[J]. 兵工学报, 2020, 41(增刊1): 39–45.LIN S J, WANG J X, MA T, et al. Superimposed effect of shock waves of underwater explosion[J]. Acta Armamentarii, 2020, 41(Supp 1): 39–45 (in Chinese). [17] HAN R, TAO L, ZHANG A M, et al. A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall[J]. Physics of Fluids, 2019, 31(6). [18] 李梅, 马宇宇, 蒋建伟, 等. 双爆源气泡与水面相互作用的实验[J]. 北京理工大学学报, 2019, 39(12): 1219–1224.LI M, MA Y Y, JIANG J W, et al. Experiments of the interactions between double explosive bubbles and free surface[J]. Transactions of Beijing Institute of Technology, 2019, 39(12): 1219–1224 (in Chinese). [19] LIU N N, ZHANG A M, CUI P, et al. Interaction of two out-of-phase underwater explosion bubbles[J]. Physics of Fluids, 2021, 33(10): 106103. doi: 10.1063/5.0064164 [20] 刘奇奇, 刘亮涛, 王金相, 等. 冲击波及气泡载荷联合作用下变截面加筋圆柱壳动态响应[J]. 水下无人系统学报, 2022, 30(3): 321–331.LIU Q Q, LIU L T, WANG J X, et al. Dynamic response of a stiffened cylindrical shell with a variable cross section subjected to shock wave and bubble load[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 321–331 (in Chinese). [21] 张轶凡, 刘亮涛, 王金相, 等. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性[J]. 兵工学报, 2023, 44(2): 345–359.ZHANG Y F, LIU L T, WANG J X, et al. Damage characteristics of underwater explosion shock wave and bubble load on typical cylindrical shell structure[J]. Acta Armamentarii, 2023, 44(2): 345–359 (in Chinese). [22] 毛致远, 段超伟, 刘刚伟, 等. 圆柱壳结构水下爆炸冲击波毁伤的吸收冲量准则[J]. 火炸药学报, 2023, 46(3): 245–251.MAO Z Y, DUAN C W, LIU G W, et al. Damage criterion of cylindrical shell structure under underwater explosion shock wave: absorbed impulse criterion[J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 245–251 (in Chinese). [23] 姚熊亮, 许维军. 多发武器同时命中时潜艇冲击环境研究[J]. 船舶工程, 2004(5): 42–49. doi: 10.3969/j.issn.1000-6982.2004.05.008YAO X L, XU W J. Research on impulsive environment of submarine during being attacked simultaneously by multiple weapons[J]. Ship Building, 2004(5): 42–49 (in Chinese). doi: 10.3969/j.issn.1000-6982.2004.05.008 [24] 佟施宇. 近场水下爆炸与典型结构耦合特性实验与数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.TONG S Y. Experimental and numerical research on coupling characteristics of near-field underwater explosion and typical Boundary[D]. Harbin: Harbin Engineering University, 2022(in Chinese). [25] ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35(3): 28. [26] N. Aquelet, M. Souli, L. Olovsson. Euler-Lagrange coupling with damping effects: Application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1-3): 110–132. doi: 10.1016/j.cma.2005.01.010 [27] 付攀, 樊海渊, 牟金磊. 水下爆炸作用下加筋板变形挠度计算方法[J]. 江苏船舶, 2014, 31(3): 10–11,34.FU P, FAN H Y, MOU J L. Calculation method of deformation deflection of stiffened plate under underwater explosion[J]. Jiangsu Ship, 2014, 31(3): 10–11,34 (in Chinese). [28] 李营, 吴卫国, 汪玉, 等. 基于修正CS模型的船用945钢冲击性能研究[J]. 中国造船, 2014, 55(3): 94–100.LI Y, WU W G, WANG Y, et al. Impact resistance of ship-build steel 945 and improved Cowper-Symonds models[J]. Shipbuilding of China, 2014, 55(3): 94–100 (in Chinese). [29] 古滨, 李炳南, 姚熊亮, 等. 水下冲击波作用下双层壳结构响应特征研究[J]. 兵器装备工程学报, 2019, 40(11): 11–18.GU B, LI B N, YAO X L, et al. Research of impact response of double-shell based on underwater explosion shock wave[J]. Journal of Ordnance Equipment Engineering, 2019, 40(11): 11–18 (in Chinese). [30] 寇晓枫, 王高辉, 卢文波, 等. 空气隔层对水下爆炸冲击波的缓冲效应[J]. 振动与冲击, 2017, 36(3): 7–13.KOU X F, WANG G H, LU W B, et al. Mitigation effects of air interlayer on underwater explosion shock wave[J]. Journal of Vibration and Shock, 2017, 36(3): 7–13 (in Chinese). [31] 吕可, 邹佳俊, 陈颖, 等. 近刚性壁面异相双气泡耦合及射流增强效应研究[J]. 力学学报, 2023, 55(8): 1605–1617. doi: 10.6052/0459-1879-23-105LYU K, ZOU J J, CHEN Y, et al. Study on the interaction and jet enhancement effect of two out-of-phase bubbles near a rigid boundary[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1605–1617 (in Chinese). doi: 10.6052/0459-1879-23-105 -