留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双爆源水下爆炸对圆柱壳结构的毁伤特性研究

陈高杰 宋英杰 邢津浩

陈高杰, 宋英杰, 邢津浩. 双爆源水下爆炸对圆柱壳结构的毁伤特性研究[J]. 中国舰船研究, 2023, 19(X): 1–16 doi: 10.19693/j.issn.1673-3185.03536
引用本文: 陈高杰, 宋英杰, 邢津浩. 双爆源水下爆炸对圆柱壳结构的毁伤特性研究[J]. 中国舰船研究, 2023, 19(X): 1–16 doi: 10.19693/j.issn.1673-3185.03536
CHEN G J, SONG Y J, XING J H. Damage characteristics of cylindrical shell structures subject to double UNDEX[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–16 doi: 10.19693/j.issn.1673-3185.03536
Citation: CHEN G J, SONG Y J, XING J H. Damage characteristics of cylindrical shell structures subject to double UNDEX[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–16 doi: 10.19693/j.issn.1673-3185.03536

双爆源水下爆炸对圆柱壳结构的毁伤特性研究

doi: 10.19693/j.issn.1673-3185.03536
基金项目: 国家自然科学基金资助项目(52201358)
详细信息
    作者简介:

    陈高杰,男,1981年生,硕士,高级工程师,研究方向:爆炸毁伤评估。E-mail:jordgeham@163.com

    宋英杰,男,1998年生,硕士,助理工程师,研究方向:水下爆炸。E-mail:15774519471_july@163.com

    邢津浩,男,2001年生,博士生。研究方向:气泡动力学。E-mail:jinhao_xing@hrbeu.edu.cn

    通信作者:

    陈高杰

  • 中图分类号: U663.2

Damage characteristics of cylindrical shell structures subject to double UNDEX

知识共享许可协议
双爆源水下爆炸对圆柱壳结构的毁伤特性研究陈高杰,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在充分研究多种毁伤元对目标毁伤模式,分析双爆源水下爆炸对圆柱壳结构的毁伤效应。  方法  首先,建立圆柱壳有限元模型,采用任意拉格朗日−欧拉(ALE)方法对单/双爆源水下爆炸下圆柱壳的毁伤特性开展研究。然后,从破口面积、最大垂向位移和塑性应变区域面积等特征参数评价结构毁伤效果。  结果  计算结果表明,以500 kg TNT装药为例,对于间距为1 m的双爆源水下爆炸,等当量的双爆源相比单爆源的爆炸对圆柱壳外板会造成更严重的毁伤,但对圆柱壳内板的毁伤不如单爆源。对于间距大于3 m的双爆源水下爆炸,随着间距的增加,爆炸对圆柱壳结构的毁伤效果越弱。  结论  通过计算不同初始参数下水下爆炸对圆柱壳结构的毁伤,获取了单、双爆源水下爆炸对圆柱壳结构的毁伤规律,结果可为增强水下作战武器威力提供参考。
  • 图  ALE方法与Zhang方程[25]计算得到的冲击波载荷时历曲线对比

    Figure  1.  Time histories of calculated shockwave load by ALE and the Zhang's equation[25]

    图  冲击波计算模型及其传播过程

    Figure  2.  Shockwave calculation model and propagation process

    图  ALE方法计算的水下爆炸气泡脉动数值结果

    Figure  3.  Numerical simulation results of UNDEX bubble pulsation by ALE method

    图  ALE方法与Zhang方程[25]的气泡脉动时历曲线对比

    Figure  4.  Comparison of bubble pulsation time history between ALE and Zhang's equation

    图  试验模型[27]与数值结果

    Figure  5.  Experiment model[27] and ALE calculation results

    图  圆柱壳计算模型

    Figure  6.  Calculation model of cylindrical shell

    图  单/双爆源下的计算工况

    Figure  7.  Calculation cases chart of single/double explosive

    图  单爆源水下爆炸作用下典型时刻下圆柱壳结构等效应力云图

    Figure  8.  The equivalent stress contours of cylindrical shell at typical moments under single UNDEX

    图  单爆源水下爆炸下圆柱壳外板毁伤云图

    Figure  9.  The damage contour plots of cylindrical shell plate under single UNDEX

    图  10  单爆源水下爆炸下圆柱壳板间骨架毁伤云图

    Figure  10.  The damage contour plots of framing structure of cylindrical shell under single UNDEX

    图  11  单爆源水下爆炸下圆柱壳内板毁伤云图

    Figure  11.  The damage contour plots of inner plate of cylindrical shell under single UNDEX

    图  12  双爆源水下爆炸工况1时的圆柱壳结构毁伤响应过程

    Figure  12.  Structural damage of cylindrical shell under double UNDEX in case 1

    图  13  双爆源水下爆炸工况3时圆柱壳结构毁伤响应过程

    Figure  13.  Structural damage of cylindrical shell under double UNDEX in case 3

    图  14  双爆源水下爆炸不同工况下的圆柱壳外板塑性应变

    Figure  14.  Plastic strain of outer plate of cylindrical shell under double UNDEX in different cases

    图  15  双爆源水下爆炸不同工况下的圆柱壳外板垂向位移

    Figure  15.  Vertical displacement of outer plate of cylindrical shell under double UNDEX in different cases

    图  16  双爆源不同间距水下爆炸后圆柱壳外板最大垂向位移和塑性变形面积

    Figure  16.  Max vertical displacement and plastic strain area of outer plate of cylindrical shell under double UNDEX in different spacing of the two explosion sources

    图  17  双爆源不同工况水下爆炸下的圆柱壳板间骨架塑性应变

    Figure  17.  Plastic strain of framing structure of cylindrical shell under double UNDEX in different cases

    图  18  双爆源不同工况水下爆炸下的圆柱壳板间骨架垂向位移

    Figure  18.  Vertical displacement of framing structure of cylindrical shell under double UNDEX in different cases

    图  19  双爆源不同间距下板间骨架最大垂向位移和塑性变形面积

    Figure  19.  Max vertical displacement and plastic strain area of framing structure of cylindrical shell under double UNDEX in different spacing of the two explosion sources

    图  20  双爆源不同工况水下爆炸下的圆柱壳内板塑性应变

    Figure  20.  Plastic strain of inter plate of cylindrical shell under double UNDEX in different cases

    图  21  双爆源不同工况水下爆炸下的圆柱壳内板垂向位移

    Figure  21.  Vertical displacement of inter plate of cylindrical shell under double UNDEX in different cases

    图  22  双爆源不同间距时水下爆炸圆柱壳内板最大垂向位移和塑性变形面积

    Figure  22.  Max vertical displacement and plastic strain area of inter plate of cylindrical shell under double UNDEX in different spacing of the two explosion sources

    表  水状态方程参数

    Table  1.  EOS parameters of water

    参数 数值
    ρw/(kg·m−3 1 000
    c/m·s−1 1 480
    S1 2.56
    S2 −1.98 6
    S3 0.226 8
    γ0 0.5
    α 2.67
    E/(J·m−3 30 700
    V 1
    下载: 导出CSV

    表  空气状态方程参数

    Table  2.  EOS parameters of air

    参数 数值
    ρa/(kg·m−3 1
    C0=C1=C2=C3=C6 0
    C4 0.4
    C5 0.4
    E/(J·m−3 222 500
    V 1
    下载: 导出CSV

    表  TNT炸药JWL状态方程参数

    Table  3.  JWL EOS parameters of TNT explosive

    参数 数值
    ρTNT/(kg·m−3 1 630
    D/(m·s−1 6 930
    Pcj/GPa 21
    A/GPa 371.2
    B/GPa 3.21
    R1 4.15
    R2 0.95
    ω 0.3
    E/(GJ·m−3 7.0
    下载: 导出CSV

    表  不同网格尺寸下冲击波载荷ALE方法计算峰值与Zhang方程[25]理论峰值对比

    Table  4.  Comparison of calculated shockwave peak loads by different element sizes with ALE and Zhang’s equation[25]

    网格尺寸
    /m
    ALE方法计算峰值
    /MPa
    Zhang方程[25]理论峰值
    /MPa
    相对误差
    /%
    0.10 56.12 56.40 0.50
    0.15 55.16 1.61
    0.20 51.18 9.26
    0.40 18.16 13.8
    下载: 导出CSV

    表  ALE方法与Zhang方程[25]计算的冲击波载荷峰值对比

    Table  5.  Comparison of shockwave peak loads calculated by ALE and Zhang's equation

    爆距
    /m
    冲击波载荷峰值/MPa相对误差
    /%
    Zhang 方程[25]ALE方法
    766.6465.232.12
    856.4055.491.61
    948.0946.253.83
    1042.3540.394.63
    下载: 导出CSV

    表  试验结果与ALE计算结果比对

    Table  6.  Results comparison of the experiment and ALE simulation

    装药类型装药/g爆距/m加筋板变形挠度/mm相对误差
    /%
    试验结果[28]ALE结果
    TNT1100.715.7915.223.61
    下载: 导出CSV

    表  计算模型结构参数

    Table  7.  Structural parameters of calculation model

    内壳外壳环肋纵骨舱壁平台
    板厚/mm30102020147
    下载: 导出CSV

    表  单爆源水下爆炸下圆柱壳毁伤特征参数

    Table  8.  Characteristic parameters of damage of cylindrical shell under single UNDEX

    破口纵向
    直径/m
    破口横向
    直径/m
    垂向最大
    位移/m
    塑性变形
    面积/m2
    外板 5.28 5.86 4.16 48.32
    板间骨架 6.36 5.26 9.50 47.31
    内板 7.36 6.74 5.74 53.94
    下载: 导出CSV
  • [1] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性[J]. 兵工学报, 2023, 44(3): 670–681.

    CHEN Y W, SUN Y X, WANG C. Damage characteristics of ship's double bottom structure subjected to underwater explosion[J]. Acta Armamentarii, 2023, 44(3): 670–681(in Chinese).
    [2] 凌荣辉, 钱立新, 唐平, 等. 聚能型鱼雷战斗部对潜艇目标毁伤研究[J]. 弹道学报, 2001(2): 23–27.

    LING R H, QIAN L X, TANG P, et al. Target damage study of shaped-charge warhead of antisubmarine torpedo[J]. Journal of Ballistics, 2001(2): 23–27 (in Chinese).
    [3] 王玉, 卢熹, 张方方, 等. 反潜鱼雷战斗部对典型潜艇目标毁伤效应研究[J]. 兵器装备工程学报, 2021, 42(12): 112–116.

    WANG Y, LU X, ZHANG F F, et al. Damage effect of anti-submarine torpedo warhead on typical submarine targets[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 112–116 (in Chinese).
    [4] 张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18(3): 139–154. doi: 10.19693/j.issn.1673-3185.03273

    ZHANG A M, MING F R, LIU Y L, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18(3): 139–154 (in Chinese). doi: 10.19693/j.issn.1673-3185.03273
    [5] 刘云龙, 王平平, 王诗平, 等. 水下爆炸作用下舰船冲击毁伤的瞬态流固耦合FSLAB软件数值模拟分析[J]. 中国舰船研究, 2022, 17(5): 228–240. doi: 10.19693/j.issn.1673-3185.02865

    LIU Y L, WANG P P, WANG S P, et al. Numerical analysis of transient fluid-structure interaction of warship impact damage caused by underwater explosion using the FSLAB[J]. Chinese Journal of Ship Research, 2022, 17(5): 228–240 (in Chinese). doi: 10.19693/j.issn.1673-3185.02865
    [6] 彭玉祥, 张阿漫, 薛冰, 等. 强冲击作用下舰船结构毁伤的三维无网格 SPH-RKPM 方法数值模拟[J]. 中国科学: 物理学, 力学, 天文学, 2021, 51(12): 124614.

    PENG Y X, ZHANG A M, XUE B, et al. Numerical investigation of ship structure damage subject to strong impact using a 3D meshless SPH-RKPM method[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(12): 124614 (in Chinese).
    [7] 张阿漫. 水下爆炸气泡三维动态特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2007.

    ZHANG A M. 3D dynamic behavior of underwater explosion bubble[D]. Harbin: Harbin Engineering University, 2007(in Chinese).
    [8] 张振华, 朱锡, 白雪飞. 水下爆炸冲击波的数值模拟研究[J]. 爆炸与冲击, 2004(2): 182–188.

    ZHANG Z H, ZHU X, BAI X F. The study on numerical simulation of underwater blast wave[J]. Explosion and Shock Waves, 2004(2): 182–188 (in Chinese).
    [9] 方斌, 朱锡, 张振华. 水下爆炸冲击波载荷作用下船底板架的塑性动力响应[J]. 哈尔滨工程大学学报, 2008(4): 326–331.

    FANG B, ZHU X, ZHANG Z H. Plastic dynamic response of ship hull grillage to underwater blast loading[J]. Journal of Harbin Engineering University, 2008(4): 326–331 (in Chinese).
    [10] 胡振宇, 曹卓尔, 李帅, 等. 水中高压脉动气泡与浮体流固耦合特性研究[J]. 力学学报, 2021, 53(4): 944–961.

    HU Z Y, CAO Z E, LI S, et al. Fluid-structure interaction between a high-pressure pulsating bubble and a floating structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 944–961 (in Chinese).
    [11] LI S, ZHANG A M, HAN R, et al. Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission[J]. Ocean Engineering, 2019, 190: 106414. doi: 10.1016/j.oceaneng.2019.106414
    [12] 李玉节, 张效慈, 吴有生, 等. 水下爆炸气泡激起的船体鞭状运动[J]. 中国造船, 2001, 42(3): 1–7. doi: 10.3969/j.issn.1000-4882.2001.03.001

    LI Y J, ZHANG X C, WU Y S, et al. Whipping response of ship hull induced by underwater explosion bubble[J]. Shipbuiding of China, 2001, 42(3): 1–7 (in Chinese). doi: 10.3969/j.issn.1000-4882.2001.03.001
    [13] 郭志荣, 陆文俊, 金晓宇. 鱼雷爆炸作用下潜艇鞭状运动响应仿真分析[J]. 水下无人系统学报, 2021, 29(5): 609–615.

    GUO Z R, LUN W J, JIN X Y. Simulation analysis of the whipping response of a submarine subjected to the torpedo explosion[J]. Journal of Unmanned Undersea Systems, 2021, 29(5): 609–615 (in Chinese).
    [14] 王海坤, 刘建湖, 潘建强, 等. 水下爆炸载荷作用下细长体圆柱壳结构鞭状响应[J]. 噪声与振动控制, 2012, 32(6): 44–48.

    WANG H K, LIU J H, PAN J Q, et al. Whipping eesponse of slender cylindrical shell to underwater explosion[J]. Noise and Vibration Control, 2012, 32(6): 44–48 (in Chinese).
    [15] 武海军, 成乐乐, 陈文戈, 等. 典型舰船结构的水下爆炸耦合毁伤研究进展[J]. 北京理工大学学报, 2023, 43(5): 439–459.

    WU H J, CHENG L L, CHEN W G, et al. Review on coupling damage effects of underwater explosion on typical ship structures[J]. Transactions of Beijing Institute of Technology, 2023, 43(5): 439–459 (in Chinese).
    [16] 林尚剑, 王金相, 马腾, 等. 水下多点爆炸冲击波叠加效应研究[J]. 兵工学报, 2020, 41(增刊1): 39–45.

    LIN S J, WANG J X, MA T, et al. Superimposed effect of shock waves of underwater explosion[J]. Acta Armamentarii, 2020, 41(Supp 1): 39–45 (in Chinese).
    [17] HAN R, TAO L, ZHANG A M, et al. A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall[J]. Physics of Fluids, 2019, 31(6).
    [18] 李梅, 马宇宇, 蒋建伟, 等. 双爆源气泡与水面相互作用的实验[J]. 北京理工大学学报, 2019, 39(12): 1219–1224.

    LI M, MA Y Y, JIANG J W, et al. Experiments of the interactions between double explosive bubbles and free surface[J]. Transactions of Beijing Institute of Technology, 2019, 39(12): 1219–1224 (in Chinese).
    [19] LIU N N, ZHANG A M, CUI P, et al. Interaction of two out-of-phase underwater explosion bubbles[J]. Physics of Fluids, 2021, 33(10): 106103. doi: 10.1063/5.0064164
    [20] 刘奇奇, 刘亮涛, 王金相, 等. 冲击波及气泡载荷联合作用下变截面加筋圆柱壳动态响应[J]. 水下无人系统学报, 2022, 30(3): 321–331.

    LIU Q Q, LIU L T, WANG J X, et al. Dynamic response of a stiffened cylindrical shell with a variable cross section subjected to shock wave and bubble load[J]. Journal of Unmanned Undersea Systems, 2022, 30(3): 321–331 (in Chinese).
    [21] 张轶凡, 刘亮涛, 王金相, 等. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性[J]. 兵工学报, 2023, 44(2): 345–359.

    ZHANG Y F, LIU L T, WANG J X, et al. Damage characteristics of underwater explosion shock wave and bubble load on typical cylindrical shell structure[J]. Acta Armamentarii, 2023, 44(2): 345–359 (in Chinese).
    [22] 毛致远, 段超伟, 刘刚伟, 等. 圆柱壳结构水下爆炸冲击波毁伤的吸收冲量准则[J]. 火炸药学报, 2023, 46(3): 245–251.

    MAO Z Y, DUAN C W, LIU G W, et al. Damage criterion of cylindrical shell structure under underwater explosion shock wave: absorbed impulse criterion[J]. Chinese Journal of Explosives & Propellants, 2023, 46(3): 245–251 (in Chinese).
    [23] 姚熊亮, 许维军. 多发武器同时命中时潜艇冲击环境研究[J]. 船舶工程, 2004(5): 42–49. doi: 10.3969/j.issn.1000-6982.2004.05.008

    YAO X L, XU W J. Research on impulsive environment of submarine during being attacked simultaneously by multiple weapons[J]. Ship Building, 2004(5): 42–49 (in Chinese). doi: 10.3969/j.issn.1000-6982.2004.05.008
    [24] 佟施宇. 近场水下爆炸与典型结构耦合特性实验与数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.

    TONG S Y. Experimental and numerical research on coupling characteristics of near-field underwater explosion and typical Boundary[D]. Harbin: Harbin Engineering University, 2022(in Chinese).
    [25] ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35(3): 28.
    [26] N. Aquelet, M. Souli, L. Olovsson. Euler-Lagrange coupling with damping effects: Application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(1-3): 110–132. doi: 10.1016/j.cma.2005.01.010
    [27] 付攀, 樊海渊, 牟金磊. 水下爆炸作用下加筋板变形挠度计算方法[J]. 江苏船舶, 2014, 31(3): 10–11,34.

    FU P, FAN H Y, MOU J L. Calculation method of deformation deflection of stiffened plate under underwater explosion[J]. Jiangsu Ship, 2014, 31(3): 10–11,34 (in Chinese).
    [28] 李营, 吴卫国, 汪玉, 等. 基于修正CS模型的船用945钢冲击性能研究[J]. 中国造船, 2014, 55(3): 94–100.

    LI Y, WU W G, WANG Y, et al. Impact resistance of ship-build steel 945 and improved Cowper-Symonds models[J]. Shipbuilding of China, 2014, 55(3): 94–100 (in Chinese).
    [29] 古滨, 李炳南, 姚熊亮, 等. 水下冲击波作用下双层壳结构响应特征研究[J]. 兵器装备工程学报, 2019, 40(11): 11–18.

    GU B, LI B N, YAO X L, et al. Research of impact response of double-shell based on underwater explosion shock wave[J]. Journal of Ordnance Equipment Engineering, 2019, 40(11): 11–18 (in Chinese).
    [30] 寇晓枫, 王高辉, 卢文波, 等. 空气隔层对水下爆炸冲击波的缓冲效应[J]. 振动与冲击, 2017, 36(3): 7–13.

    KOU X F, WANG G H, LU W B, et al. Mitigation effects of air interlayer on underwater explosion shock wave[J]. Journal of Vibration and Shock, 2017, 36(3): 7–13 (in Chinese).
    [31] 吕可, 邹佳俊, 陈颖, 等. 近刚性壁面异相双气泡耦合及射流增强效应研究[J]. 力学学报, 2023, 55(8): 1605–1617. doi: 10.6052/0459-1879-23-105

    LYU K, ZOU J J, CHEN Y, et al. Study on the interaction and jet enhancement effect of two out-of-phase bubbles near a rigid boundary[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1605–1617 (in Chinese). doi: 10.6052/0459-1879-23-105
  • 加载中
图(22) / 表(8)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-11-05
  • 网络出版日期:  2023-11-09

目录

    /

    返回文章
    返回