留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

敷设抗冲覆盖层的双层圆柱壳抗冲性能研究

师子锋 伍世杰 殷彩玉 刘敬喜 赵应龙

师子锋, 伍世杰, 殷彩玉, 等. 敷设抗冲覆盖层的双层圆柱壳抗冲性能研究[J]. 中国舰船研究, 2023, 19(X): 1–12 doi: 10.19693/j.issn.1673-3185.03508
引用本文: 师子锋, 伍世杰, 殷彩玉, 等. 敷设抗冲覆盖层的双层圆柱壳抗冲性能研究[J]. 中国舰船研究, 2023, 19(X): 1–12 doi: 10.19693/j.issn.1673-3185.03508
SHI Z F, WU S J, YIN C Y, et al. Dynamic performance of double-walled cylindrical shell structure with anti-shock coating[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–12 doi: 10.19693/j.issn.1673-3185.03508
Citation: SHI Z F, WU S J, YIN C Y, et al. Dynamic performance of double-walled cylindrical shell structure with anti-shock coating[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–12 doi: 10.19693/j.issn.1673-3185.03508

敷设抗冲覆盖层的双层圆柱壳抗冲性能研究

doi: 10.19693/j.issn.1673-3185.03508
基金项目: 船舶振动噪声重点实验室基金资助项目(JCKY2021207CI04);湖北省基金面上项目资助项目(2022CFB020);国家自然科学基金资助项目(12372358,11802180,52071150);基础加强计划重点基础研究资助项目(2020-JCJQ-ZD-222)
详细信息
    作者简介:

    师子锋:师子峰,男,1984年生,硕士,研究员

    伍世杰,男,1998年生,硕士。研究方向:舰艇水下爆炸冲击与防护。E-mail:1315893530@qq.com

    殷彩玉,女,1988年生,博士,讲师。研究方向:舰艇水下爆炸冲击与防护。E-mail:cyyin@hust.edu.cn

    通信作者:

    殷彩玉

  • 中图分类号: U661.43

Dynamic performance of double-walled cylindrical shell structure with anti-shock coating

知识共享许可协议
敷设抗冲覆盖层的双层圆柱壳抗冲性能研究师子锋,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在研究双壳体潜艇非接触水下爆炸下的抗冲性能,提出在壳体表面敷设抗冲覆盖层的防护方法,以内壳冲击响应为评价指标,研究不同敷设方式下的抗冲击效能。  方法  采用声−固耦合法,建立外流场−外壳体−舷间水−内壳体的非线性流−固耦合冲击动力学模,对内外壳外表面均敷设覆盖层(工况2)、仅内壳外表面敷设覆盖层(工况3)和仅外壳外表面敷设覆盖层(工况4)情况下的壳体冲击响应及覆盖层抗冲击效能进行对比分析。  结果  结果表明,对于工况2,内壳体迎爆面不同测点处的加速度、速度和位移峰值平均降低量分别达94.1%、81.2%和23.3%,周向和纵向微应变峰值平均降低量达67.7%和88.3%;对于工况3,相应值分别为60.4%、45.4%和−2.1%,以及34.6%和68.0%;对于工况4,相应值分别达86.7%、75.1%和20.3%,以及68.6%和77.8%。  结论  针对双壳体潜艇,在壳体上敷设抗冲覆盖层可有效降低内壳冲击响应,尤其是加速度和速度响应。在外壳体外表面上覆盖层敷设时的抗冲击效果更好。
  • 图  双壳模型

    Figure  1.  The double-walled cylindrical shell model.

    图  有限元模型

    Figure  2.  The finite element model.

    图  覆盖层名义压应力−压应变曲线

    Figure  3.  The nominal compression stress versus compression strain of the anti-shock coating.

    图  入射冲击波压力时历曲线

    Figure  4.  Time history of the incident shock wave pressure.

    图  壳体上不同部位覆盖层敷设示意图

    Figure  5.  Illustration of anti-shock coating covered on the hull at various locations.

    图  不同时刻4种工况下流体中冲击波传递特性

    Figure  6.  The shock wave propagation characteristics in water in the four cases.

    图  4种工况下外流体与外壳流−固耦合面压力时历曲线

    Figure  7.  Time histories of pressure on the fluid-solid coupling interface between external water and outer hull.

    图  不同时刻4种工况下壳体动态应力

    Figure  8.  Dynamic stress contours of the hull in the four cases.

    图  工况3中测点及透过外壳后冲击波形态

    Figure  9.  The measuring points arrangement and the shock wave shape through outer hull.

    图  10  用于壳体响应评估的测点布置图

    Figure  10.  The arrangement of measuring points for the shell response estimation

    图  11  不同工况下壳体测点A1的加速度响应时历曲线

    Figure  11.  Time histories for the acceleration response of the hull at measuring point A1 in the four cases.

    图  12  不同工况下壳体上测点A1的速度响应时历曲线

    Figure  12.  Time histories for the velocity response at measuring point A1 of the hull in the four cases.

    图  13  不同工况下壳体上测点A1的位移响应时历曲线

    Figure  13.  Time histories for the displacement response at measuring point A1 of the hull in the four cases.

    图  14  4种工况下壳体测点A1响应冲击谱结果

    Figure  14.  The shock response spectra at measuring point A1 of the hull in the four cases.

    图  15  壳体不同测点速度峰值结果

    Figure  15.  The peak velocities at different measuring points of the hull.

    图  16  壳体上双向应变测点布置图

    Figure  16.  The arrangement of circumferential and axial strain measurement points on the hull

    图  17  不同工况下测点E1的周向应变响应时历曲线

    Figure  17.  Time histories of circumferential strain at measuring point E1 of the hull in different cases.

    图  18  不同工况下测点E1的纵向应变响应时历曲线

    Figure  18.  Time histories of axial strain at measuring point E1 of the hull in different cases.

    图  19  壳体上不同测点的周向应变峰值结果

    Figure  19.  The peak values of circumferential strain at different measuring points of the hull

    图  20  壳体上不同测点的纵向应变峰值结果

    Figure  20.  The peak values of axial strain at different measuring points of the hull

    图  21  不同工况下壳体内能响应时历曲线

    Figure  21.  Time histories of the internal energy of the hull in different cases.

    图  22  不同工况下覆盖层吸能时历曲线

    Figure  22.  Time histories of the energy absorption by the anti-shock coatings in different cases.

    表  双层壳体材料参数

    Table  1.  The material parameters for the double-walled cylindrical shell.

    参数数值
    密度/(kg·m−3)7 800
    杨氏模量/GPa210
    泊松比0.3
    静屈服强度/MPa345
    切线模量/MPa250
    D40
    n5
    下载: 导出CSV

    表  敷设覆盖层后壳体加速度、速度及位移峰值变化

    Table  2.  Variation of peak values in acceleration, velocity and displacement of the hull with anti-shock coating.

    参数 工况 测点峰值变化量/% 均值/%
    A1 A2 A3


    2 96.6 90.5 95.3 94.1
    3 64.8 55.8 60.5 60.4
    4 95.9 78.6 85.5 86.7

    2 78.4 84.1 81.1 81.2
    3 44.3 43.9 47.9 45.4
    4 75.4 75.6 74.3 75.1

    2 22.2 25.7 21.9 23.3
    3 0.6 −0.6 −6.3 −2.1
    4 19.4 22.9 18.8 20.3
    下载: 导出CSV

    表  敷设覆盖层后壳体微应变峰值变化

    Table  3.  Variation of peak values in micro-strain of the hull with anti-shock coating

    参数工况测点峰值变化量/%均值/%
    E1E2E3E4
    周向应变254.955.670.889.667.7
    321.832.366.317.434.6
    456.261.971.085.368.6
    纵向应变286.088.791.786.788.3
    361.466.770.373.468.0
    474.977.680.378.577.8
    下载: 导出CSV
  • [1] 刘建湖, 周心桃, 潘建强, 等. 舰艇抗爆抗冲击技术现状和发展途径[J]. 中国舰船研究, 2016, 11(1): 46–56. doi: 10.3969/j.issn.1673-3185.2016.01.007

    LIU J H, ZHOU X T, PAN J Q, et al. The state analysis and technical development routes for the anti-explosion and shock technology of naval ships[J]. Chinese Journal of Ship Research, 2016, 11(1): 46–56(in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.007
    [2] 杜俭业, 杜志鹏, 李 营, 等. 舰船爆炸冲击防护技术进展[J]. 兵工学报, 2015, 36(增刊1): 391–400.

    DU J Y, DU Z P, LI Y, et al. The progress of Naval Ship Explosion Protection Technology[J]. Acta Armamentarii, 2015, 36(Supp 1): 391–400(in Chinese).
    [3] 李大鹏, 吕景彬, 祝子民. 潜艇生命力及水下爆炸对潜艇的破坏机理和损伤模式研究[J]. 中外船舶科技, 2017(3): 22–29.

    LI D P, LV J B, ZHU Z M. Study on the damage mechanism and damage mode of submarine vitality and underwater explosion to submarine[J]. Ship Technology, 2017(3): 22–29(in Chinese).
    [4] 张振华, 黄秀峰, 韩邦熠, 等. 金字塔点阵夹层壳对潜艇抗水爆防护机理[J]. 中国科学: 物理学、力学、天文学, 2021, 51(12): 61-80.

    ZHANG Z H, HUANG X F, HAN B Y, et al. Anti-water explosion protection mechanism of pyramid lattice sandwich shell for submarines [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(12): 61-80(in Chinese).
    [5] LI G L, SHI D, SHI D Y, CHEN Y Y, et al. A study on damage characteristics of double-layer cylindrical shells subjected to underwater contact explosion[J]. International Journal of Impact Engineering, 2023, 172: 104428. doi: 10.1016/j.ijimpeng.2022.104428
    [6] ZHANG Z F, MING F R, ZHANG A M. Damage characteristics of coated cylindrical shells subjected to underwater contact explosion[J]. Shock and Vibration, 2014(1): 1–15.
    [7] ZHOU Y, JI C, LONG Y, et al. Experimental study on the deformation and damage of cylindrical shell-water-cylindrical shell structures subjected to underwater explosion[J]. Thin-Walled Structures, 2018, 127: 654–665. doi: 10.1016/j.tws.2018.03.002
    [8] GAO F Y, JI C, LONG Y, et al. Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203: 107214. doi: 10.1016/j.oceaneng.2020.107214
    [9] TALLEY M, MILLS D, Internal fluid modes: CARDEROCKDIV-SSM-69-94/8, [R]. [S. 1. ]: Naval Surface Warfare Center, 1994.
    [10] 肖巍, 张阿漫, 汪玉. 具有内域的双层加筋圆柱壳动响应特性[J]. 力学学报, 2014, 46(1): 120–127.

    XIAO W, ZHANG A M, WANG Y. Dynamic response of double ring-stiffened cylindrical hull with internal fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 120–127(in Chinese).
    [11] HUANG S Z, TONG X D, CHEN Y, et al. Effects of internal fluid on the dynamic behaviors of double cylindrical shells subjected to underwater explosion[J]. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144(4): 041701. doi: 10.1115/1.4053699
    [12] HUANG S Z, JIN Z Y, CHEN Y. Underwater blast resistance of double cylindrical shells with circular tube stiffeners[J]. Ocean Engineering, 2021, 238: 109691. doi: 10.1016/j.oceaneng.2021.109691
    [13] 潘杰. 潜艇非耐压结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    PAN J. Research on anti-shock capacity of the non-pressure structure of submarine subjected to underwater explosion [D]. Harbin: Harbin Engineering University, 2012(in Chinese).
    [14] 姚熊亮, 钱德进, 刘庆杰. 敷设声学覆盖层的双层壳抗冲性能研究[J]. 哈尔滨工程大学学报, 2007, 28(8): 841–846.

    YAO X L, QIAN D J, LIU Q J. Anti-shock performance of a double layer cylindrical shell structure coated with an acoustic covering[J]. Journal of Harbin Engineering University, 2007, 28(8): 841–846(in Chinese).
    [15] 唐永刚. 双层圆柱壳的抗冲击特性研究[J]. 船舶力学, 2010, 14(11): 1284–1289.

    TANG Y G. Study on anti-shock characteristic of double-layer cylindrical shell[J]. Journal of Ship Mechanics, 2010, 14(11): 1284–1289(in Chinese).
    [16] SCHIFFER A, TAGARIELLI V L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulations[J]. International Journal of Impact Engineering, 2014, 63: 177–187. doi: 10.1016/j.ijimpeng.2013.08.011
    [17] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1999.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-15
  • 修回日期:  2023-10-26
  • 网络出版日期:  2023-10-31

目录

    /

    返回文章
    返回