Dynamic performance of double-walled cylindrical shell structure with anti-shock coating
-
摘要:
目的 旨在研究双壳体潜艇非接触水下爆炸下的抗冲性能,提出在壳体表面敷设抗冲覆盖层的防护方法,以内壳冲击响应为评价指标,研究不同敷设方式下的抗冲击效能。 方法 采用声−固耦合法,建立外流场−外壳体−舷间水−内壳体的非线性流−固耦合冲击动力学模,对内外壳外表面均敷设覆盖层(工况2)、仅内壳外表面敷设覆盖层(工况3)和仅外壳外表面敷设覆盖层(工况4)情况下的壳体冲击响应及覆盖层抗冲击效能进行对比分析。 结果 结果表明,对于工况2,内壳体迎爆面不同测点处的加速度、速度和位移峰值平均降低量分别达94.1%、81.2%和23.3%,周向和纵向微应变峰值平均降低量达67.7%和88.3%;对于工况3,相应值分别为60.4%、45.4%和−2.1%,以及34.6%和68.0%;对于工况4,相应值分别达86.7%、75.1%和20.3%,以及68.6%和77.8%。 结论 针对双壳体潜艇,在壳体上敷设抗冲覆盖层可有效降低内壳冲击响应,尤其是加速度和速度响应。在外壳体外表面上覆盖层敷设时的抗冲击效果更好。 Abstract:Objectives In order to enhance the anti-shock performance of double-hull submarine against non-contact underwater explosions, a method of plastering anti-shock coating on the surface of double-hull ships is proposed, and the shock response of inner hull is used to evaluate the shock mitigation effects by different means of anti-shock coating. Methods By employing the acoustic-solid coupling method, a nonlinear fluid-structure coupling dynamic model is established for the external flow field, outer hull, gapped water, and inner hull. Three approaches of laying anti-shock coating on the hull are compared, including covering it on both the inner and outer hulls (Case 2), and on the inner hull (Case 3), as well as on the outer (Case 4). Results The results show that: in Case 2, the average reduction rates in peak values of acceleration, velocity, and displacement are 94.1%, 81.2%, and 23.3% respectively, the average reduction rates in circumferential and axial micro-strain peak values are 67.7% and 88.3% respectively; in Case 3, the three values are 60.4%, 45.4%, and −2.1%, and the two values are 34.6% and 68.0%; in Case 4, the three values are 86.7%, 75.1%, and 20.3%, and the two values are 68.6% and 77.8% respectively. Conclusions The hull covered with anti-shock coating can effectively enhance the anti-shock performance of double-hull ships, especially for the acceleration and velocity results, and the coating on the outer hull plays a primary protective role. -
Key words:
- underwater explosion /
- double-hull ships /
- anti-shock coating
-
表 1 双层壳体材料参数
Table 1. The material parameters for the double-walled cylindrical shell.
参数 数值 密度/(kg·m−3) 7 800 杨氏模量/GPa 210 泊松比 0.3 静屈服强度/MPa 345 切线模量/MPa 250 D 40 n 5 表 2 敷设覆盖层后壳体加速度、速度及位移峰值变化
Table 2. Variation of peak values in acceleration, velocity and displacement of the hull with anti-shock coating.
参数 工况 测点峰值变化量/% 均值/% A1 A2 A3 加
速
度2 96.6 90.5 95.3 94.1 3 64.8 55.8 60.5 60.4 4 95.9 78.6 85.5 86.7 速
度2 78.4 84.1 81.1 81.2 3 44.3 43.9 47.9 45.4 4 75.4 75.6 74.3 75.1 位
移2 22.2 25.7 21.9 23.3 3 0.6 −0.6 −6.3 −2.1 4 19.4 22.9 18.8 20.3 表 3 敷设覆盖层后壳体微应变峰值变化
Table 3. Variation of peak values in micro-strain of the hull with anti-shock coating
参数 工况 测点峰值变化量/% 均值/% E1 E2 E3 E4 周向应变 2 54.9 55.6 70.8 89.6 67.7 3 21.8 32.3 66.3 17.4 34.6 4 56.2 61.9 71.0 85.3 68.6 纵向应变 2 86.0 88.7 91.7 86.7 88.3 3 61.4 66.7 70.3 73.4 68.0 4 74.9 77.6 80.3 78.5 77.8 -
[1] 刘建湖, 周心桃, 潘建强, 等. 舰艇抗爆抗冲击技术现状和发展途径[J]. 中国舰船研究, 2016, 11(1): 46–56. doi: 10.3969/j.issn.1673-3185.2016.01.007LIU J H, ZHOU X T, PAN J Q, et al. The state analysis and technical development routes for the anti-explosion and shock technology of naval ships[J]. Chinese Journal of Ship Research, 2016, 11(1): 46–56(in Chinese). doi: 10.3969/j.issn.1673-3185.2016.01.007 [2] 杜俭业, 杜志鹏, 李 营, 等. 舰船爆炸冲击防护技术进展[J]. 兵工学报, 2015, 36(增刊1): 391–400.DU J Y, DU Z P, LI Y, et al. The progress of Naval Ship Explosion Protection Technology[J]. Acta Armamentarii, 2015, 36(Supp 1): 391–400(in Chinese). [3] 李大鹏, 吕景彬, 祝子民. 潜艇生命力及水下爆炸对潜艇的破坏机理和损伤模式研究[J]. 中外船舶科技, 2017(3): 22–29.LI D P, LV J B, ZHU Z M. Study on the damage mechanism and damage mode of submarine vitality and underwater explosion to submarine[J]. Ship Technology, 2017(3): 22–29(in Chinese). [4] 张振华, 黄秀峰, 韩邦熠, 等. 金字塔点阵夹层壳对潜艇抗水爆防护机理[J]. 中国科学: 物理学、力学、天文学, 2021, 51(12): 61-80.ZHANG Z H, HUANG X F, HAN B Y, et al. Anti-water explosion protection mechanism of pyramid lattice sandwich shell for submarines [J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2021, 51(12): 61-80(in Chinese). [5] LI G L, SHI D, SHI D Y, CHEN Y Y, et al. A study on damage characteristics of double-layer cylindrical shells subjected to underwater contact explosion[J]. International Journal of Impact Engineering, 2023, 172: 104428. doi: 10.1016/j.ijimpeng.2022.104428 [6] ZHANG Z F, MING F R, ZHANG A M. Damage characteristics of coated cylindrical shells subjected to underwater contact explosion[J]. Shock and Vibration, 2014(1): 1–15. [7] ZHOU Y, JI C, LONG Y, et al. Experimental study on the deformation and damage of cylindrical shell-water-cylindrical shell structures subjected to underwater explosion[J]. Thin-Walled Structures, 2018, 127: 654–665. doi: 10.1016/j.tws.2018.03.002 [8] GAO F Y, JI C, LONG Y, et al. Numerical investigation of the dynamic response of CWC structures subjected to underwater explosion loading[J]. Ocean Engineering, 2020, 203: 107214. doi: 10.1016/j.oceaneng.2020.107214 [9] TALLEY M, MILLS D, Internal fluid modes: CARDEROCKDIV-SSM-69-94/8, [R]. [S. 1. ]: Naval Surface Warfare Center, 1994. [10] 肖巍, 张阿漫, 汪玉. 具有内域的双层加筋圆柱壳动响应特性[J]. 力学学报, 2014, 46(1): 120–127.XIAO W, ZHANG A M, WANG Y. Dynamic response of double ring-stiffened cylindrical hull with internal fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 120–127(in Chinese). [11] HUANG S Z, TONG X D, CHEN Y, et al. Effects of internal fluid on the dynamic behaviors of double cylindrical shells subjected to underwater explosion[J]. Journal of Offshore Mechanics and Arctic Engineering, 2022, 144(4): 041701. doi: 10.1115/1.4053699 [12] HUANG S Z, JIN Z Y, CHEN Y. Underwater blast resistance of double cylindrical shells with circular tube stiffeners[J]. Ocean Engineering, 2021, 238: 109691. doi: 10.1016/j.oceaneng.2021.109691 [13] 潘杰. 潜艇非耐压结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.PAN J. Research on anti-shock capacity of the non-pressure structure of submarine subjected to underwater explosion [D]. Harbin: Harbin Engineering University, 2012(in Chinese). [14] 姚熊亮, 钱德进, 刘庆杰. 敷设声学覆盖层的双层壳抗冲性能研究[J]. 哈尔滨工程大学学报, 2007, 28(8): 841–846.YAO X L, QIAN D J, LIU Q J. Anti-shock performance of a double layer cylindrical shell structure coated with an acoustic covering[J]. Journal of Harbin Engineering University, 2007, 28(8): 841–846(in Chinese). [15] 唐永刚. 双层圆柱壳的抗冲击特性研究[J]. 船舶力学, 2010, 14(11): 1284–1289.TANG Y G. Study on anti-shock characteristic of double-layer cylindrical shell[J]. Journal of Ship Mechanics, 2010, 14(11): 1284–1289(in Chinese). [16] SCHIFFER A, TAGARIELLI V L. The one-dimensional response of a water-filled double hull to underwater blast: experiments and simulations[J]. International Journal of Impact Engineering, 2014, 63: 177–187. doi: 10.1016/j.ijimpeng.2013.08.011 [17] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Cambridge: Cambridge University Press, 1999. -