Deep reinforcement learning for ride control of catamaran
-
摘要: 【目的】从双体船纵向运动控制出发,针对传统控制算法对精确的数学模型和系统参数的依赖问题,提出基于深度强化学习的纵向运动控制算法。【方法】该方法通过设计奖励函数和神经网络结构以及调整相关超参数,并与双体船模型相结合,最后通过实验,比较深度强化学习DDPG算法和GA-LQR算法在三种不同控制方式下的控制效果以及不同工况和初始状态下的鲁棒性。【结果】在相同工况下,不同控制方式的比较中,DDPG算法相对于GA-LQR算法在控制效果上略有优势,但其控制过程中的鳍角输出更为激进。在不同工况和不同初始状态下的仿真实验中,当系统和环境模型发生较大变化时,DDPG算法的控制效果会受到较大影响,但在系统和环境变化较小的情况下,DDPG算法表现出更好的适应性,相较于GA-LQR算法更具优势。【结论】综合而言,本研究认为DDPG算法在性能上与GA-LQR算法表现相当。
-
关键词:
- 关键词:深度强化学习 /
- 双体船 /
- 姿态控制
Abstract: [Objectives] This paper proposes a vertical motion control algorithm based on deep reinforcement learning, focusing on the dependency of traditional control algorithms on precise mathematical models and system parameters. [Methods] The method achieves its goal by designing reward functions, neural network structures and adjusting relevant hyperparameters. It combines these techniques with a catamaran model. Finally, through experiments, it compares the control performance of the deep reinforcement learning DDPG algorithm and the GA-LQR algorithm under three different control modes and the robustness under different operating conditions and initial states. [Results] Under the same operating conditions, when comparing different control modes, the DDPG algorithm has a slight advantage in control performance over the GA-LQR algorithm, but its fin angle output during the control process is more aggressive. In simulated experiments under different operating conditions and initial states, when the system and environmental models undergo significant changes, the control performance of the DDPG algorithm is significantly affected. However, when the system and environment changes are small, the DDPG algorithm exhibits better adaptability and superiority over the GA-LQR algorithm. [Conclusions] Overall, this study concludes that the DDPG algorithm performs similarly to the GA-LQR algorithm in terms of performance.-
Key words:
- Keywords: deep reinforcement learning /
- catamaran /
- attitude control
-
计量
- 文章访问数: 63
- 被引次数: 0