留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两栖飞机入水冲击振动噪声特性数值仿真

徐佳伟 杭天一 梁泽豪 常道宾 胡世 李海超

徐佳伟, 杭天一, 梁泽豪, 等. 两栖飞机入水冲击振动噪声特性数值仿真[J]. 中国舰船研究, 2024, 19(x): 1–11 doi: 10.19693/j.issn.1673-3185.03479
引用本文: 徐佳伟, 杭天一, 梁泽豪, 等. 两栖飞机入水冲击振动噪声特性数值仿真[J]. 中国舰船研究, 2024, 19(x): 1–11 doi: 10.19693/j.issn.1673-3185.03479
XU J W, HANG T Y, LIANG Z H, et al. Numerical simulation of vibration and noise characteristics of water entry impact of amphibious aircraft[J]. Chinese Journal of Ship Research, 2024, 19(x): 1–11 doi: 10.19693/j.issn.1673-3185.03479
Citation: XU J W, HANG T Y, LIANG Z H, et al. Numerical simulation of vibration and noise characteristics of water entry impact of amphibious aircraft[J]. Chinese Journal of Ship Research, 2024, 19(x): 1–11 doi: 10.19693/j.issn.1673-3185.03479

两栖飞机入水冲击振动噪声特性数值仿真

doi: 10.19693/j.issn.1673-3185.03479
基金项目: 国家自然科学基金资助项目 (52101351, 52371314)
详细信息
    作者简介:

    徐佳伟,男,2000年生,硕士生。研究方向:船舶振动噪声控制。E-mail:xujiawei@hrbeu.edu.cn

    杭天一,男,2001年生,硕士生。研究方向:船舶振动噪声控制。E-mail:hangtianyi@hrbeu.edu.cn

    李海超,男,1988年生,副研究员,硕士生导师。研究方向:船舶振动噪声控制。E-mail:lihaichao@hrbeu.edu.cn

    通信作者:

    李海超

  • 中图分类号: U661.44;TB533.2

Numerical simulation of vibration and noise characteristics of water entry impact of amphibious aircraft

知识共享许可协议
两栖飞机入水冲击振动噪声特性数值仿真徐佳伟,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对两栖飞机入水冲击振动噪声分析需求,研究前飞速度和入水角度对两栖飞机入水冲击振动噪声的影响规律。  方法  首先,基于ALE算法,建立两栖飞机有限元模型,开展两栖飞机入水冲击运动特性分析,探究不同前飞速度和入水角度下两栖飞机入水冲击阶段运动特性规律;然后,基于统计能量分析(SEA)方法,建立两栖飞机SEA模型,开展两栖飞机入水冲击振动噪声特性数值仿真,探究前飞速度和入水角度对两栖飞机入水冲击振动噪声的影响规律。  结果  结果表明,前飞速度越小,两栖飞机受到水动力冲击响应越小,横荡程度越小,纵向速度下降也随之越慢,且两栖飞机驾驶舱内噪声呈全频段降低的趋势;入水角度对驾驶舱内噪声影响不大,相比而言,入水角度为4°时两栖飞机受到的水动力冲击影响最大,但横向稳定性最好。  结论  通过控制适当的前飞速度和入水角度可兼顾入水姿态及舱室噪声控制。
  • 图  两个耦合子系统之间的功率流关系

    Figure  1.  The power flow relationship between two coupled subsystems

    图  两栖飞机几何模型

    Figure  2.  Geometric model of the aircraft

    图  两栖飞机及流体域模型相对位置

    Figure  3.  Relative position of the aircraft and the fluid domains

    图  两栖飞机前飞速度及入水角度示意图

    Figure  4.  The diagram of water entry speed and the entry angle of the aircraft

    图  两栖飞机及流体域网格划分

    Figure  5.  Meshing schemes of the aircraft and the fluid domain

    图  不同的前飞速度下两栖飞机垂向过载结果对比

    Figure  6.  Comparison of vertical overloads of the aircraft at different forward speeds

    图  不同的前飞速度下两栖飞机纵向速度结果对比

    Figure  7.  Comparison of longitudinal velocities of the aircraft at different forward speeds

    图  不同前飞速度下两栖飞机横向加速度对比

    Figure  8.  Comparison of transverse accelerations of the aircraft at different forward speeds

    图  不同的入水角度下两栖飞机垂向过载结果对比

    Figure  9.  Comparison of vertical overloads of the aircraft at different entry angles

    图  10  不同的入水角度下两栖飞机纵向速度结果对比

    Figure  10.  Comparison of longitudinal velocities of the aircraft at different entry angles

    图  11  不同的入水角度下两栖飞机横向加速度结果对比

    Figure  11.  Comparison of transverse accelerations of the aircraft at different entry angles

    图  12  两栖飞机模型分舱纵截面示意图

    Figure  12.  Vertical section diagram of the aircraft model subdivision

    图  13  SEA模型子系统模型

    Figure  13.  The subsystem models of SEA model

    图  14  湍流边界层作用示意图

    Figure  14.  Action diagram of turbulent boundary layer

    图  15  两栖飞机底板施加脉动压力载荷示意图

    Figure  15.  The diagram of pulsating pressure load applied to the bottom plate of the aircraft

    图  16  两栖飞机舱室噪声预报的总声压级云图(ref=2e-5 Pa)

    Figure  16.  The overall level of sound magnitude RMS for noise prediction in the aircraft cabin( ref =2e-5 Pa)

    图  17  两栖飞机驾驶室声压级频谱(ref =2e-5 Pa)

    Figure  17.  The SPL spectral curve of the aircraft's cockpit (ref =2e-5 Pa)

    图  18  不同前飞速度下飞机驾驶室声压级频谱(ref=2e-5 Pa)

    Figure  18.  The SPL spectral curves of the aircraft's cockpit at different entry speeds (ref =2e-5 Pa)

    图  19  不同入水角度下飞机舱室噪声总声压级云图( ref =2e-5 Pa)

    Figure  19.  The overall level of sound magnitude RMS for each cabin of the aircraft at different entry angles (ref =2e-5 Pa)

    图  20  不同入水角度下飞机驾驶室声压级频谱(ref =2e-5 Pa)

    Figure  20.  The SPL spectral curves of the aircraft's cockpit at different entry angles (ref =2e-5 Pa)

    表  铝合金相关参数

    Table  1.  Related parameters for aluminum alloy

    材料密度/(kg·m−3杨氏模量/MPa剪切模量/MPa泊松比
    铝合金2 8507126.690.33
    下载: 导出CSV

    表  两栖飞机及流体域模型尺寸

    Table  2.  Model sizes of the aircraft and the fluid domains

    模型长度/m宽度/m高度/m
    空气域300606
    水域3006012
    两栖飞机3738.84.6
    下载: 导出CSV

    表  网格无关性验证

    Table  3.  Mesh independence verification

    网格数量/万垂向过载纵向速度/(m·s−1横向加速度/(m·s−1
    600.7827.611−0.419
    750.7967.624−0.422
    960.7927.626−0.421
    下载: 导出CSV

    表  参数取值表

    Table  4.  parameter value table

    参数黏附状态分离状态
    A0.9000.830
    B2.0002.150
    C0.3460.170
    下载: 导出CSV

    表  板壳子系统表面最大来流速度

    Table  5.  Maximum flow velocity on the surface of plate and shell subsystem

    板壳子系统最大来流速度/(m·s−1
    板壳子系统1,226.41
    板壳子系统3,45.294
    板壳子系统5,613.21
    板壳子系统7,818.49
    板壳子系统9,1010.57
    下载: 导出CSV

    表  不同的前飞速度下各个底板的最大冲击速度

    Table  6.  The maximum impact velocities of each base plate when the entry speeds changes

    板壳子系统前飞速度10 m/s前飞速度15 m/s前飞速度20 m/s
    板壳子系统1,216.09026.4132.490
    板壳子系统3,46.4545.2946.507
    板壳子系统5,614.49013.21016.250
    板壳子系统7,89.66718.49022.750
    板壳子系统9,104.84710.5709.755
    下载: 导出CSV

    表  不同的入水角度下各个底板的最大冲击速度

    Table  7.  The maximum impact velocities of each base plate when the entry angles changes

    板壳子系统入水角度3°入水角度4°入水角度5°
    板壳子系统1,226.37026.4127.210
    板壳子系统3,47.9425.2948.168
    板壳子系统5,65.30713.2116.330
    板壳子系统7,82.67418.4910.890
    板壳子系统9,101.02310.5710.890
    下载: 导出CSV
  • [1] 褚林塘. 水上飞机水动力设计[M]. 北京: 航空工业出版社, 2014.

    CHU L T. Seaplane hydrodynamic design[M]. Beijing: Aviation Industry Press, 2014: 2−3 (in Chinese).
    [2] 申蒸洋, 陈孝明, 黄领才. 大型水陆两栖飞机特殊任务模式对总体设计的挑战[J]. 航空学报, 2019, 40(1): 522400.

    SHEN Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522400 (in Chinese).
    [3] von KARMAN T. The impact on seaplane floats during landing: NACA-TN-321[R]. Washington DC: NACA, 1929.
    [4] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Zeitschrift fur Angewandet Mathematik und Mechanik, 1932, 12(4): 193–215. doi: 10.1002/zamm.19320120402
    [5] MAYO W L. Analysis and modification of theory for impact of seaplanes on water: NACA-TR-810[R]. Washington DC: NACA, 1945.
    [6] MILWITZHY B. Generalized theory for seaplane impact : NACA-TR-1103 [R]. Washington DC: NACA, 1948.
    [7] 王明振, 吴彬, 李新颖, 等. 水陆两栖飞机平静水面着水冲击载荷影响因素分析[J]. 科学技术与工程, 2016, 16(12): 298–302. doi: 10.3969/j.issn.1671-1815.2016.12.050

    WANG M Z, WU B, LI X Y, et al. An experimental study about impact load of the amphibious aircraft landing on the calm water[J]. Science Technology and Engineering, 2016, 16(12): 298–302 (in Chinese). doi: 10.3969/j.issn.1671-1815.2016.12.050
    [8] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830–838. doi: 10.13700/j.bh.1001-5965.2019.0462

    ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830–838 (in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0462
    [9] LIN J S A. Airplane interior noise modeling using statistical energy analysis approach[C]//Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit. Bellevue, WA, USA: AIAA, 1999.
    [10] 邱斌, 吴卫国, 刘恺. 高速船全频段舱室噪声仿真预报[J]. 中国舰船研究, 2011, 6(06): 49–53. doi: 10.3969/j.issn.1673-3185.2011.06.010

    QIU B, WU W G, LIU K. Full Frequency cabin noise simulation prediction of high-speed ship[J]. Chinese Journal of Ship Research, 2011, 6(06): 49–53. doi: 10.3969/j.issn.1673-3185.2011.06.010
    [11] 李上明, 屈明. 基于ALE方法的楔形体入水分析[J]. 计算机辅助工程, 2018, 27(3): 48–53. doi: 10.13340/j.cae.2018.03.011

    LI S M, QU M. Wedge water entry analysis based on ALE method[J]. Computer Aided Engineering, 2018, 27(3): 48–53 (in Chinese). doi: 10.13340/j.cae.2018.03.011
    [12] 方超. 应用ALE有限元法对飞机水上迫降过程的流固耦合仿真[D]. 上海: 复旦大学, 2011.

    FANG C. Simulation of fluid-solid interaction on water ditching of an airplane by ALE method[D]. Shanghai: Fudan University, 2011.
    [13] 褚林塘, 孙丰, 廉滋鼎, 等. 水陆两栖飞机船体着水载荷数值与试验分析[J]. 振动与冲击, 2016, 35(15): 211–215. doi: 10.13465/j.cnki.jvs.2016.15.035

    CHU L T, SUN F, LIAN Z D, et al. Numerical simulation and tests for water load of amphibious aircraft hulls[J]. Journal of Vibration and Shock, 2016, 35(15): 211–215 (in Chinese). doi: 10.13465/j.cnki.jvs.2016.15.035
    [14] 孙丰, 吴彬, 廉滋鼎, 等. 着水姿态对大型水陆两栖飞机着水性能的影响[J]. 船舶力学, 2019, 23(4): 397–404. doi: 10.3969/j.issn.1007-7294.2019.04.003

    SUN F, WU B, LIAN Z D, et al. Influence of pitch angle on water- entry performance of large-scale amphibian aircraft hull[J]. Journal of Ship Mechanics, 2019, 23(4): 397–404 (in Chinese). doi: 10.3969/j.issn.1007-7294.2019.04.003
    [15] 卢昱锦, 肖天航, 邓双厚, 等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(7): 124483.

    LU Y J, XIAO T H, DENG S H, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124483 (in Chinese).
    [16] 刘海生, 杨春庄, 陈士杰. 统计能量分析方法声振预测应用研究[J]. 声学技术, 2010, 29(2): 192–197. doi: 10.3969/j.issn.1000-3630.2010.02.016

    LIU H S, YANG C Z, CHEN S J. Vibroacoustic applications of statistical energy analysis method[J]. Technical Acoustics, 2010, 29(2): 192–197 (in Chinese). doi: 10.3969/j.issn.1000-3630.2010.02.016
    [17] 李劼. 统计能量分析方法在飞机舱内噪声预测中的初步应用及实验验证[D]. 上海: 同济大学, 2006.

    LI J. Preliminary application and experimental verification of statistical energy analysis method in aircraft cabin noise prediction[D]. Shanghai: Tongji University, 2006 (in Chinese).
    [18] 胡莹, 陈克安, 潘凯. 基于统计能量分析的飞机舱室降噪研究[J]. 噪声与振动控制, 2007, 27(2): 65–68. doi: 10.3969/j.issn.1006-1355.2007.02.019

    HU Y, CHEN K A, PAN K. Optimization design about plane cabin noise based on statistical energy analysis[J]. Noise and Vibration Control, 2007, 27(2): 65–68 (in Chinese). doi: 10.3969/j.issn.1006-1355.2007.02.019
    [19] 潘凯. 基于VA One的飞机舱内噪声预计方法研究[J]. 测控技术, 2008, 27(3): 22–23,26. doi: 10.3969/j.issn.1000-8829.2008.03.008

    PAN K. Study on prediction method of aircraft interior noise based on VA one software[J]. Measurement & Control Technology, 2008, 27(3): 22–23,26 (in Chinese). doi: 10.3969/j.issn.1000-8829.2008.03.008
    [20] 董宁娟, 潘凯. 基于VA-One的湍流边界层噪声计算方法的仿真分析[J]. 科学技术与工程, 2012, 12(32): 8798–8802. doi: 10.3969/j.issn.1671-1815.2012.32.072

    DONG N J, PAN K. VA-one of a turbulent boundary layer noise calculation method-based simulation analysis[J]. Science Technology and Engineering, 2012, 12(32): 8798–8802 (in Chinese). doi: 10.3969/j.issn.1671-1815.2012.32.072
    [21] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461

    WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion and Shock Waves, 2021, 41(10): 104201 (in Chinese). doi: 10.11883/bzycj-2020-0461
    [22] 蔡德威. 基于Linux的声压级测量技术研究[D]. 杭州: 浙江大学, 2014.

    CAI D W. Research on sound level detection technology based on Linux operation system[D]. Hangzhou: Zhejiang University, 2014.
  • 加载中
图(20) / 表(7)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-27
  • 修回日期:  2023-10-04
  • 网络出版日期:  2023-11-21

目录

    /

    返回文章
    返回