Numerical simulation of vibration and noise characteristics of water entry impact of amphibious aircraft
-
摘要:
目的 针对两栖飞机入水冲击振动噪声分析需求,研究前飞速度和入水角度对两栖飞机入水冲击振动噪声的影响规律。 方法 首先,基于ALE算法,建立两栖飞机有限元模型,开展两栖飞机入水冲击运动特性分析,探究不同前飞速度和入水角度下两栖飞机入水冲击阶段运动特性规律;然后,基于统计能量分析(SEA)方法,建立两栖飞机SEA模型,开展两栖飞机入水冲击振动噪声特性数值仿真,探究前飞速度和入水角度对两栖飞机入水冲击振动噪声的影响规律。 结果 结果表明,前飞速度越小,两栖飞机受到水动力冲击响应越小,横荡程度越小,纵向速度下降也随之越慢,且两栖飞机驾驶舱内噪声呈全频段降低的趋势;入水角度对驾驶舱内噪声影响不大,相比而言,入水角度为4°时两栖飞机受到的水动力冲击影响最大,但横向稳定性最好。 结论 通过控制适当的前飞速度和入水角度可兼顾入水姿态及舱室噪声控制。 Abstract:Objective In response to the analysis requirements of the vibration and noise caused by the impact of amphibious aircraft entering the water, this paper studies the influence of forward speeds and entry angles on the water entry impact vibration and noise of amphibious aircraft. Methods First, based on the ALE algorithm, a finite element model of an amphibious aircraft is established and its motion characteristics in the water entry impact stage under different forward speeds and water entry angles are analyzed. Next, based on the SEA method, a SEA model of an amphibious aircraft is established and its water entry impact vibration and noise characteristics are studied, as well as the influence of forward flight speed and entry angle. Results The results show that the lower the water forward speed, the smaller the response of the amphibious aircraft to the hydrodynamic impact, the less roll and the slower the longitudinal velocity decrease. The noise in the cockpit of the amphibious aircraft shows a trend of reducing across the entire frequency range. The effect of water entry angle on cockpit noise is not significant. Compared with other angles, the water entry angle of 4° has the greatest impact on the hydrodynamic impact of the amphibious aircraft, but the best lateral stability. Conclusion By controlling the appropriate forward speed and water entry angle, the water entry attitude and cabin noise control can be taken into account. -
Key words:
- amphibious aircraft /
- water entry impact /
- vibration and noise /
- forward speed /
- entry angle
-
表 1 铝合金相关参数
Table 1. Related parameters for aluminum alloy
材料 密度/(kg·m−3) 杨氏模量/MPa 剪切模量/MPa 泊松比 铝合金 2 850 71 26.69 0.33 表 2 两栖飞机及流体域模型尺寸
Table 2. Model sizes of the aircraft and the fluid domains
模型 长度/m 宽度/m 高度/m 空气域 300 60 6 水域 300 60 12 两栖飞机 37 38.8 4.6 表 3 网格无关性验证
Table 3. Mesh independence verification
网格数量/万 垂向过载 纵向速度/(m·s−1) 横向加速度/(m·s−1) 60 0.782 7.611 −0.419 75 0.796 7.624 −0.422 96 0.792 7.626 −0.421 表 4 参数取值表
Table 4. parameter value table
参数 黏附状态 分离状态 A 0.900 0.830 B 2.000 2.150 C 0.346 0.170 表 5 板壳子系统表面最大来流速度
Table 5. Maximum flow velocity on the surface of plate and shell subsystem
板壳子系统 最大来流速度/(m·s−1) 板壳子系统1,2 26.41 板壳子系统3,4 5.294 板壳子系统5,6 13.21 板壳子系统7,8 18.49 板壳子系统9,10 10.57 表 6 不同的前飞速度下各个底板的最大冲击速度
Table 6. The maximum impact velocities of each base plate when the entry speeds changes
板壳子系统 前飞速度10 m/s 前飞速度15 m/s 前飞速度20 m/s 板壳子系统1,2 16.090 26.41 32.490 板壳子系统3,4 6.454 5.294 6.507 板壳子系统5,6 14.490 13.210 16.250 板壳子系统7,8 9.667 18.490 22.750 板壳子系统9,10 4.847 10.570 9.755 表 7 不同的入水角度下各个底板的最大冲击速度
Table 7. The maximum impact velocities of each base plate when the entry angles changes
板壳子系统 入水角度3° 入水角度4° 入水角度5° 板壳子系统1,2 26.370 26.41 27.210 板壳子系统3,4 7.942 5.294 8.168 板壳子系统5,6 5.307 13.21 16.330 板壳子系统7,8 2.674 18.49 10.890 板壳子系统9,10 1.023 10.57 10.890 -
[1] 褚林塘. 水上飞机水动力设计[M]. 北京: 航空工业出版社, 2014.CHU L T. Seaplane hydrodynamic design[M]. Beijing: Aviation Industry Press, 2014: 2−3 (in Chinese). [2] 申蒸洋, 陈孝明, 黄领才. 大型水陆两栖飞机特殊任务模式对总体设计的挑战[J]. 航空学报, 2019, 40(1): 522400.SHEN Z Y, CHEN X M, HUANG L C. Challenges for aircraft design due to special mission models of large-scale amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522400 (in Chinese). [3] von KARMAN T. The impact on seaplane floats during landing: NACA-TN-321[R]. Washington DC: NACA, 1929. [4] WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Zeitschrift fur Angewandet Mathematik und Mechanik, 1932, 12(4): 193–215. doi: 10.1002/zamm.19320120402 [5] MAYO W L. Analysis and modification of theory for impact of seaplanes on water: NACA-TR-810[R]. Washington DC: NACA, 1945. [6] MILWITZHY B. Generalized theory for seaplane impact : NACA-TR-1103 [R]. Washington DC: NACA, 1948. [7] 王明振, 吴彬, 李新颖, 等. 水陆两栖飞机平静水面着水冲击载荷影响因素分析[J]. 科学技术与工程, 2016, 16(12): 298–302. doi: 10.3969/j.issn.1671-1815.2016.12.050WANG M Z, WU B, LI X Y, et al. An experimental study about impact load of the amphibious aircraft landing on the calm water[J]. Science Technology and Engineering, 2016, 16(12): 298–302 (in Chinese). doi: 10.3969/j.issn.1671-1815.2016.12.050 [8] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830–838. doi: 10.13700/j.bh.1001-5965.2019.0462ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830–838 (in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0462 [9] LIN J S A. Airplane interior noise modeling using statistical energy analysis approach[C]//Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit. Bellevue, WA, USA: AIAA, 1999. [10] 邱斌, 吴卫国, 刘恺. 高速船全频段舱室噪声仿真预报[J]. 中国舰船研究, 2011, 6(06): 49–53. doi: 10.3969/j.issn.1673-3185.2011.06.010QIU B, WU W G, LIU K. Full Frequency cabin noise simulation prediction of high-speed ship[J]. Chinese Journal of Ship Research, 2011, 6(06): 49–53. doi: 10.3969/j.issn.1673-3185.2011.06.010 [11] 李上明, 屈明. 基于ALE方法的楔形体入水分析[J]. 计算机辅助工程, 2018, 27(3): 48–53. doi: 10.13340/j.cae.2018.03.011LI S M, QU M. Wedge water entry analysis based on ALE method[J]. Computer Aided Engineering, 2018, 27(3): 48–53 (in Chinese). doi: 10.13340/j.cae.2018.03.011 [12] 方超. 应用ALE有限元法对飞机水上迫降过程的流固耦合仿真[D]. 上海: 复旦大学, 2011.FANG C. Simulation of fluid-solid interaction on water ditching of an airplane by ALE method[D]. Shanghai: Fudan University, 2011. [13] 褚林塘, 孙丰, 廉滋鼎, 等. 水陆两栖飞机船体着水载荷数值与试验分析[J]. 振动与冲击, 2016, 35(15): 211–215. doi: 10.13465/j.cnki.jvs.2016.15.035CHU L T, SUN F, LIAN Z D, et al. Numerical simulation and tests for water load of amphibious aircraft hulls[J]. Journal of Vibration and Shock, 2016, 35(15): 211–215 (in Chinese). doi: 10.13465/j.cnki.jvs.2016.15.035 [14] 孙丰, 吴彬, 廉滋鼎, 等. 着水姿态对大型水陆两栖飞机着水性能的影响[J]. 船舶力学, 2019, 23(4): 397–404. doi: 10.3969/j.issn.1007-7294.2019.04.003SUN F, WU B, LIAN Z D, et al. Influence of pitch angle on water- entry performance of large-scale amphibian aircraft hull[J]. Journal of Ship Mechanics, 2019, 23(4): 397–404 (in Chinese). doi: 10.3969/j.issn.1007-7294.2019.04.003 [15] 卢昱锦, 肖天航, 邓双厚, 等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(7): 124483.LU Y J, XIAO T H, DENG S H, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124483 (in Chinese). [16] 刘海生, 杨春庄, 陈士杰. 统计能量分析方法声振预测应用研究[J]. 声学技术, 2010, 29(2): 192–197. doi: 10.3969/j.issn.1000-3630.2010.02.016LIU H S, YANG C Z, CHEN S J. Vibroacoustic applications of statistical energy analysis method[J]. Technical Acoustics, 2010, 29(2): 192–197 (in Chinese). doi: 10.3969/j.issn.1000-3630.2010.02.016 [17] 李劼. 统计能量分析方法在飞机舱内噪声预测中的初步应用及实验验证[D]. 上海: 同济大学, 2006.LI J. Preliminary application and experimental verification of statistical energy analysis method in aircraft cabin noise prediction[D]. Shanghai: Tongji University, 2006 (in Chinese). [18] 胡莹, 陈克安, 潘凯. 基于统计能量分析的飞机舱室降噪研究[J]. 噪声与振动控制, 2007, 27(2): 65–68. doi: 10.3969/j.issn.1006-1355.2007.02.019HU Y, CHEN K A, PAN K. Optimization design about plane cabin noise based on statistical energy analysis[J]. Noise and Vibration Control, 2007, 27(2): 65–68 (in Chinese). doi: 10.3969/j.issn.1006-1355.2007.02.019 [19] 潘凯. 基于VA One的飞机舱内噪声预计方法研究[J]. 测控技术, 2008, 27(3): 22–23,26. doi: 10.3969/j.issn.1000-8829.2008.03.008PAN K. Study on prediction method of aircraft interior noise based on VA one software[J]. Measurement & Control Technology, 2008, 27(3): 22–23,26 (in Chinese). doi: 10.3969/j.issn.1000-8829.2008.03.008 [20] 董宁娟, 潘凯. 基于VA-One的湍流边界层噪声计算方法的仿真分析[J]. 科学技术与工程, 2012, 12(32): 8798–8802. doi: 10.3969/j.issn.1671-1815.2012.32.072DONG N J, PAN K. VA-one of a turbulent boundary layer noise calculation method-based simulation analysis[J]. Science Technology and Engineering, 2012, 12(32): 8798–8802 (in Chinese). doi: 10.3969/j.issn.1671-1815.2012.32.072 [21] 魏海鹏, 史崇镔, 孙铁志, 等. 基于ALE方法的航行体高速入水缓冲降载性能数值研究[J]. 爆炸与冲击, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461WEI H P, SHI C B, SUN T Z, et al. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion and Shock Waves, 2021, 41(10): 104201 (in Chinese). doi: 10.11883/bzycj-2020-0461 [22] 蔡德威. 基于Linux的声压级测量技术研究[D]. 杭州: 浙江大学, 2014.CAI D W. Research on sound level detection technology based on Linux operation system[D]. Hangzhou: Zhejiang University, 2014. -