留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向AUV动态对接的声学补偿无迹粒子滤波算法

付少波 关夏威 王嘉 张昊

付少波, 关夏威, 王嘉, 等. 一种面向AUV动态对接的声学补偿无迹粒子滤波算法[J]. 中国舰船研究, 2023, 19(x): 1–7 doi: 10.19693/j.issn.1673-3185.03366
引用本文: 付少波, 关夏威, 王嘉, 等. 一种面向AUV动态对接的声学补偿无迹粒子滤波算法[J]. 中国舰船研究, 2023, 19(x): 1–7 doi: 10.19693/j.issn.1673-3185.03366
FU S B, GUAN X W, WANG J, et al. An acoustic compensated unscented particle filter for AUV dynamic docking[J]. Chinese Journal of Ship Research, 2023, 19(x): 1–7 doi: 10.19693/j.issn.1673-3185.03366
Citation: FU S B, GUAN X W, WANG J, et al. An acoustic compensated unscented particle filter for AUV dynamic docking[J]. Chinese Journal of Ship Research, 2023, 19(x): 1–7 doi: 10.19693/j.issn.1673-3185.03366

一种面向AUV动态对接的声学补偿无迹粒子滤波算法

doi: 10.19693/j.issn.1673-3185.03366
基金项目: 湖北省青年拔尖人才资助项目
详细信息
    作者简介:

    付少波,男,2000年生,硕士生

    关夏威,男,1991年生,博士,高级工程师

    王嘉,男,1996年生,硕士,助理工程师

    张昊, 男,1983年生,博士, 研究员

    通信作者:

    张昊

  • 中图分类号: U674.941;P733.23

An acoustic compensated unscented particle filter for AUV dynamic docking

知识共享许可协议
一种面向AUV动态对接的声学补偿无迹粒子滤波算法付少波,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对浅水环境下自主水下航行器(AUV)动态对接过程中超短基线定位系统(USBL)声学相对导航问题,提出一种基于扰动观测器的补偿无迹粒子滤波算法(CUPF)。  方法  该算法依据航位推算模型补偿USBL数据中的缺失值,利用观测器技术估计AUV动态对接过程中未知扰动,结合无迹粒子滤波过滤USBL数据中的野值,并实现AUV状态的预估。  结果  湖试数据表明,所提方法能够有效地剔除USBL定位中的野值并填补缺失值,速度估计误差不超过15%,计算时间相较于传统算法减少了57%。  结论  所提方法可充分利用相对量测信息,在平滑AUV运动轨迹的同时提高了USBL定位精度,准确估计了AUV运动状态,有利于AUV顺利对接。
  • 图  AUV对接试验系统

    Figure  1.  The docking trial system of AUV

    图  AUV对接试验流程图

    Figure  2.  The docking process of AUV

    图  滤波算法框架

    Figure  3.  The framework of the CUPEF algorithm

    图  北东地坐标系下的AUV和坞站

    Figure  4.  AUV and docking station in the North-East-Down coordinate system

    图  CUPF流程图

    Figure  5.  Flowchart of CUPF algorithm

    图  使用不同方法的定位轨迹

    Figure  6.  Positioning trajectories of AUV using different methods

    图  UPF和CUPF的速度估计误差

    Figure  7.  The estimated error of speed using UPF and CUPF

    图  观测器估计扰动和实际扰动

    Figure  8.  The estimated disturbance and real disturbance

    图  UPF和CUPF的计算时间

    Figure  9.  Time-consuming of calculation using UPF and CUPF

  • [1] PAN W, ZHANG Y. Research on dynamic docking process and collision problems of AUV based on joint control simulation[C]//Proceedings of the 7th International Conference on Computer and Communications (ICCC). Chengdu, China: IEEE, 2021: 1057−1061.
    [2] CHEN G Y, WANG J Q, HU H Y. An integrated GNSS/INS/DR positioning strategy considering nonholonomic constraints for intelligent vehicle[C]//Proceedings of the 6th CAA International Conference on Vehicular Control and Intelligence (CVCI). Nanjing, China: IEEE, 2022: 1−6.
    [3] 刘贤俊, 叶鹏, 张同伟, 等. 基于DR/USBL的HOV组合导航算法[J]. 水下无人系统学报, 2022, 30(4): 494–499. doi: 10.11993/j.issn.2096-3920.202105003

    LIU X J, YE P, ZHANG T W, et al. DR/USBL integrated navigation algorithm for HOV[J]. Journal of Unmann-ed Undersea Systems, 2022, 30(4): 494–499 (in Chinese). doi: 10.11993/j.issn.2096-3920.202105003
    [4] 裘天佑. 基于超短基线定位的AUV对接导航方法研究[D]. 中国科学院大学, 2019.
    [5] CAIATI A, DAVIDE F, BENEDETTO A, et al. Experimental results with a mixed USBL/LBL system for AUV navigation[C]//Proceedings of 2014 Underwater Communications and Networking (UComms). Sestri Levante, Italy: IEEE, 2014: 1−4.
    [6] PHUONG T T, OHISHI K, MITSANTISUK C, et al. Disturbance observer and Kalman filter based motion control realization[J]. IEEJ Journal of Industry Applications, 2018, 7(1): 1–14. doi: 10.1541/ieejjia.7.1
    [7] YAN H F, ZHAO X H, GAO S S, et al. Adaptive robust unscented particle filter and its application in SINS/SAR integration navigation system[C]//Proceedings of the 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqing, China: IEEE, 2017: 2364−2368.
    [8] 王磊. 深海AUV多源导航信息融合方法研究[D]. 南京: 东南大学, 2015.

    WANG Lei. Research on multi-source navigation information fusion method for deep-sea AUV[D]. Nanjing: Southeast University, 2015
    [9] FAN S, LIU C, LI B, et al. AUV docking based on USBL navigation and vision guidance[J]. Journal of Marine Science and Technology, 2019, 24: 673–685. doi: 10.1007/s00773-018-0577-8
    [10] 李春雨, 张东升, 张延顺, 等. 一种基于声学定位/航位推算的水下导航定位方法[J]. 船舶工程, 2015, 37(8): 60–63,85. doi: 10.13788/j.cnki.cbgc.2015.08.057

    LI C Y, ZHANG D S, ZHANG Y S, et al. Underwater navigation and location method based on acoustic positioning and dead reckoning[J]. Ship Engineering, 2015, 37(8): 60–63,85 (in Chinese). doi: 10.13788/j.cnki.cbgc.2015.08.057
    [11] MITSANTISUK C, OHISHI K, URUSHIHARA S, et al. Kalman filter-based disturbance observer and its applications to sensorless force control[J]. Advanced Robotics, 2011, 25(3–4): 335–353. doi: 10.1163/016918610X552141
    [12] RADKE A, GAO Z. A survey of state and disturbance observers for practitioners[C]//Proceedings of 2006 American Control Conference, Minneapolis, MN, USA : IEEE, 2006: 6−10.
    [13] 郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182

    ZHENG R, SONG T, SUN Q G, et al. Review on underwater docking technology of AUV[J]. Chinese Journal of Ship Research, 2018, 13(6): 43–49,65. doi: 10.19693/j.issn.1673-3185.01182
  • 加载中
图(9)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-08-20
  • 网络出版日期:  2023-11-24

目录

    /

    返回文章
    返回