A fast finite element modeling approach of ship structure based on knowledge
-
摘要:
目的 针对船舶结构有限元分析(FEA)过程中创建有限元模型耗时且严重依赖工程师经验的问题,提出一种基于知识和几何模型特征的快速有限元建模框架。 方法 该方法充分利用CAD系统现有的模型数据,通过模型特征实现CAD与CAE系统之间的模型数据共享。首先,基于专家知识对CAD几何特征进行工程语义标记,生成CAD信息模型;然后,基于构建的知识规则对CAD信息模型进行特征约简;最后,采用XML中性文件构建基于知识的数据传递和匹配方法,将几何特征和属性信息与预先构建的CAE参数化模板进行匹配,实现船舶结构快速有限元建模。 结果 以某6.6万吨散货船典型装载工况的舱段结构强度计算分析为例,该方法能够实现几何模型、边界条件等信息的自动提取、标记以及模型自动约简,通过基于知识的特征匹配规则快速实现结构有限元建模及分析,有效减少了数据传递过程中丢失并实现知识重用。 结论 通过嵌入知识重用规则搭建的船舶结构快速有限元建模方法提高了CAD与CAE系统之间数据、信息、知识的转换效率,在实际工程中具有良好的通用性和可扩展性。 Abstract:Objective Since creating finite element models in finite element analysis (FEA) of ship structures is time-consuming and highly dependent on engineers' experience, this paper proposes knowledge-based fast finite element modeling approach to solve this problem. This approach makes full use of the existing model data of CAD system and shares of model data between CAD and CAE system through the model features. Method First, based on expert knowledge, the CAD geometric features are marked with engineering semantics to generate CAD information models; Secondly, feature reduction of CAD information model is carried out based on the constructed knowledge rules. Finally, neutral file XML is used to construct a knowledge-based data transfer and matching method, so that geometric features and attribute information can be matched with the pre-constructed CAE parameterized template, so that the finite element modeling of ship structure can be done quickly. Results Taking the structural strength analysis of a typical loading condition of a 66,000 ton bulk carrier as an example, this approach can realize the automatic extraction, labeling and model automatic reduction of geometric model, boundary conditions and other information, and quickly complete the finite element modeling and analysis of structure through the knowledge based feature matching rules, effectively reduce the loss of data in the process of transmission and realize the reuse of knowledge. Conclusions The fast finite element modeling approach of ship structure built by embedding knowledge reuse rules improves the conversion efficiency of data, information and knowledge between CAD and CAE systems, and has good universality and expansibility in practical engineering. -
表 1 目标船的主尺度
Table 1. Principal particulars of the object ship
参数 数值 总长/m 192.60 垂线间长/m 190.12 型宽/m 36.00 型深/m 17.00 结构吃水/m 12.20 结构方形系数 0.90 表 2 目标船主要细节
Table 2. Main details of the object ship
板名称 AH板厚/mm 主甲板 23 舷侧外板 14 ,14.5,15.5 舱口围板 20 外底板 14,16 舭部外板 15 顶边舱斜板 13,13.5,14,18 底边舱斜板 18 内底板 19,19.5 实肋板 11.5 -
[1] 杜臣勇, 张治, 陈海天. 面向航天产品研发的CAD/CAE集成技术浅析[J]. 微型机与应用, 2009: 20−24.DU C Y, ZHANG Z, CHEN H T. Analysis of CAD/CAE integration technology for aerospace product development[J]. Microcomputer & Its Applications, 2009: 20−24 (in Chinese). [2] 朱苏. 基于中间平台的船舶CAD/CAE模型转换研究[D]. 上海: 上海交通大学, 2011.ZHU S. The study on based middle platform for ship FEM transformation of CAD/CAE[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese). [3] HAN Y S, LEE J, LEE J, et al. 3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(7): 658–668. doi: 10.1080/0951192X.2019.1599440 [4] XIA Z H, WANG Q F, WANG Y J, et al. A CAD/CAE incorporate software framework using a unified representation architecture[J]. Advances in Engineering Software, 2015, 87: 68–85. doi: 10.1016/j.advengsoft.2015.05.005 [5] MA Y, NIU W T, LUO Z J, et al. Static and dynamic performance evaluation of a 3-DOF spindle head using CAD–CAE integration methodology[J]. Robotics and Computer-Integrated Manufacturing, 2016, 41: 1–2. doi: 10.1016/j.rcim.2016.02.006 [6] 林垚, 张少雄, 王丽荣, 等. 基于NX的船舶CAD/CAE模型预处理[J]. 船海工程, 2017, 46(1): 41–44.LIN Y, ZHANG S X, WANG L R, et al. Study on model preparation from CAD to CAE based on NX for ship structures[J]. Ship & Ocean Engineering, 2017, 46(1): 41–44 (in Chinese). [7] TORNINCASA S, BONISOLI E, DI MONACO F. Virtual prototyping through multisoftware integration for energy harvester design[J]. Journal of Intelligent Materials Systems and Structures, 2013, 25(14): 1705–1714. [8] 张红旗, 陈帝江, 王锐, 等. 雷达结构协同设计中的CAD/CAE数据自动处理与转换技术[J]. 机械与电子, 2009(12): 39–41.ZHANG H Q, CHEN D J, WANG R, et al. Automatic processing and conversion technology of CAD/CAE data in radar structure collaborative development system[J]. Machinery & Electronics, 2009(12): 39–41 (in Chinese). [9] 王丽荣, 陈有芳, 章志兵, 等. 基于NX平台的船舶结构有限元快速建模系统[C]//第十五届中国CAE工程分析技术年会论文集. 上海: 中国力学学会产学研工作委员会, 2019: 65−68.WANG L R, CHEN Y F, ZHANG Z B, et al. Finite element rapid modeling system of ship structure based on NX platform[C]//Proceedings of the 15th China CAE Engineering Analysis Technology Annual Conference. Shanghai, China: The Industry, University and Research Work Committee of the Chinese Society of Mechanics, 2019: 65−68 (in Chinese). [10] LI C T, WANG D Y. Multi-objective optimisation of a container ship lashing bridge using knowledge-based engineering[J]. Ships and Offshore Structures, 2019, 14(1): 35–52. doi: 10.1080/17445302.2018.1472520 [11] PARK H S, DANG X P. Structural optimization based on CAD–CAE integration and metamodeling techniques[J]. Computer-Aided Design, 2010, 42(10): 889–902. doi: 10.1016/j.cad.2010.06.003 [12] ATTENE M, ROBBIANO F, SPAGNUOLO M, et al. Characterization of 3D shape parts for semantic annotation[J]. Computer-Aided Design, 2009, 41(10): 756–763. doi: 10.1016/j.cad.2009.01.003 [13] FLOTYŃSKI J, WALCZAK K. Customization of 3D content with semantic meta-scenes[J]. Graphical Models, 2016, 88: 23–39. doi: 10.1016/j.gmod.2016.07.001 [14] LI C T, WANG D Y. Knowledge-based engineering–based method for containership lashing bridge optimization design and structural improvement with functionally graded thickness plates[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 233(3): 760–778. [15] POKOJSKI J, SZUSTAKIEWICZ K, WOŹNICKI Ł, et al. Industrial application of knowledge-based engineering in commercial CAD/CAE systems[J]. Journal of Industrial Information Integration, 2022, 25: 100255. doi: 10.1016/j.jii.2021.100255 [16] 中国船级社. 钢制海船入级规范[S]. 北京: 人民交通出版社, 2019.China Classification Society (CCS). Rules and regulations for the construction and classification of sea-going steel ships[S]. Beijing: China Communications Press, 2019 (in Chinese). [17] SUN W, MA Q Y, CHEN S. A framework for automated finite element analysis with an ontology-based approach[J]. Journal of Mechanical Science and Technology, 2009, 23(12): 3209–3220. doi: 10.1007/s12206-009-1005-0 -