留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于知识的船舶结构快速有限元建模方法

罗文俊 李春通 韦朋余 王德禹

罗文俊, 李春通, 韦朋余, 等. 基于知识的船舶结构快速有限元建模方法[J]. 中国舰船研究, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03359
引用本文: 罗文俊, 李春通, 韦朋余, 等. 基于知识的船舶结构快速有限元建模方法[J]. 中国舰船研究, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03359
LUO W J, LI C T, WEI P Y, et al. A fast finite element modeling approach of ship structure based on knowledge[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03359
Citation: LUO W J, LI C T, WEI P Y, et al. A fast finite element modeling approach of ship structure based on knowledge[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03359

基于知识的船舶结构快速有限元建模方法

doi: 10.19693/j.issn.1673-3185.03359
基金项目: 中央高校基本科研业务费专项资助项目(26822212)
详细信息
    作者简介:

    罗文俊,男,1994年生,硕士生,工程师。研究方向:船舶结构力学,知识工程。E-mail:luo.wenjun@coscoshipping.com

    李春通,男,1988年生,博士,助理研究员。研究方向:知识工程,非线性动力学,船舶数字化智能设计。E-mail:chuntong8856@sjtu.edu.cn

    韦朋余,男,1982年生,研究员。研究方向:船舶结构极限强度分析及试验,虚实融合。E-mail:wei_pengyu@163.com

    王德禹,男,1961年生,博士,教授,博士生导师。研究方向:船舶与海洋工程结构力学,结构优化设计与可靠性分析,结构极限强度与试验技术。E-mail:dywang@sjtu.edu.cn

    通信作者:

    王德禹

  • 中图分类号: U663

A fast finite element modeling approach of ship structure based on knowledge

知识共享许可协议
基于知识的船舶结构快速有限元建模方法罗文俊,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对船舶结构有限元分析(FEA)过程中创建有限元模型耗时且严重依赖工程师经验的问题,提出一种基于知识和几何模型特征的快速有限元建模框架。  方法  该方法充分利用CAD系统现有的模型数据,通过模型特征实现CAD与CAE系统之间的模型数据共享。首先,基于专家知识对CAD几何特征进行工程语义标记,生成CAD信息模型;然后,基于构建的知识规则对CAD信息模型进行特征约简;最后,采用XML中性文件构建基于知识的数据传递和匹配方法,将几何特征和属性信息与预先构建的CAE参数化模板进行匹配,实现船舶结构快速有限元建模。  结果  以某6.6万吨散货船典型装载工况的舱段结构强度计算分析为例,该方法能够实现几何模型、边界条件等信息的自动提取、标记以及模型自动约简,通过基于知识的特征匹配规则快速实现结构有限元建模及分析,有效减少了数据传递过程中丢失并实现知识重用。  结论  通过嵌入知识重用规则搭建的船舶结构快速有限元建模方法提高了CAD与CAE系统之间数据、信息、知识的转换效率,在实际工程中具有良好的通用性和可扩展性。
  • 图  基于知识的CAD/CAE集成框架流程图

    Figure  1.  The process of the knowledge-based CAD/CAE integration framework

    图  基于特征的语义标记和匹配

    Figure  2.  Feature-based semantic markup and matching

    图  KBE产品设计流程图

    Figure  3.  The flowchart of KBE product design

    图  基于知识和特征的几何模型约简过程

    Figure  4.  The flowchart of geometric model simplification based on knowledge and features

    图  数据、信息和知识的多层传递过程

    Figure  5.  The process of multi-layer transfer among the data, information and knowledge

    图  有限元建模智能生成方案流程图

    Figure  6.  The flowchart of intelligent generation scheme for finite element modeling

    图  6.6万吨散货船货舱段中横剖面图(单位:mm)

    Figure  7.  Transverse mid-ship section of hold section for the 66,000 ton bulk carrier cargo (all dimensions in mm)

    图  船中横剖面的工程语义标记

    Figure  8.  The engineering semantic markup for the transverse mid-ship structure

    图  KBE模型简化实现过程

    Figure  9.  The KBE model simplification implementation process

    图  10  船舶结构快速有限元建模的实现过程

    Figure  10.  Implementation process for fast finite element modeling of ship structure

    图  11  商业有限元软件分析结果

    Figure  11.  The analysis results calculated through commercial finite element software

    表  目标船的主尺度

    Table  1.  Principal particulars of the object ship

    参数数值
    总长/m192.60
    垂线间长/m190.12
    型宽/m36.00
    型深/m17.00
    结构吃水/m12.20
    结构方形系数0.90
    下载: 导出CSV

    表  目标船主要细节

    Table  2.  Main details of the object ship

    板名称AH板厚/mm
    主甲板23
    舷侧外板14 ,14.5,15.5
    舱口围板20
    外底板14,16
    舭部外板15
    顶边舱斜板13,13.5,14,18
    底边舱斜板18
    内底板19,19.5
    实肋板11.5
    下载: 导出CSV
  • [1] 杜臣勇, 张治, 陈海天. 面向航天产品研发的CAD/CAE集成技术浅析[J]. 微型机与应用, 2009: 20−24.

    DU C Y, ZHANG Z, CHEN H T. Analysis of CAD/CAE integration technology for aerospace product development[J]. Microcomputer & Its Applications, 2009: 20−24 (in Chinese).
    [2] 朱苏. 基于中间平台的船舶CAD/CAE模型转换研究[D]. 上海: 上海交通大学, 2011.

    ZHU S. The study on based middle platform for ship FEM transformation of CAD/CAE[D]. Shanghai: Shanghai Jiao Tong University, 2011 (in Chinese).
    [3] HAN Y S, LEE J, LEE J, et al. 3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(7): 658–668. doi: 10.1080/0951192X.2019.1599440
    [4] XIA Z H, WANG Q F, WANG Y J, et al. A CAD/CAE incorporate software framework using a unified representation architecture[J]. Advances in Engineering Software, 2015, 87: 68–85. doi: 10.1016/j.advengsoft.2015.05.005
    [5] MA Y, NIU W T, LUO Z J, et al. Static and dynamic performance evaluation of a 3-DOF spindle head using CAD–CAE integration methodology[J]. Robotics and Computer-Integrated Manufacturing, 2016, 41: 1–2. doi: 10.1016/j.rcim.2016.02.006
    [6] 林垚, 张少雄, 王丽荣, 等. 基于NX的船舶CAD/CAE模型预处理[J]. 船海工程, 2017, 46(1): 41–44.

    LIN Y, ZHANG S X, WANG L R, et al. Study on model preparation from CAD to CAE based on NX for ship structures[J]. Ship & Ocean Engineering, 2017, 46(1): 41–44 (in Chinese).
    [7] TORNINCASA S, BONISOLI E, DI MONACO F. Virtual prototyping through multisoftware integration for energy harvester design[J]. Journal of Intelligent Materials Systems and Structures, 2013, 25(14): 1705–1714.
    [8] 张红旗, 陈帝江, 王锐, 等. 雷达结构协同设计中的CAD/CAE数据自动处理与转换技术[J]. 机械与电子, 2009(12): 39–41.

    ZHANG H Q, CHEN D J, WANG R, et al. Automatic processing and conversion technology of CAD/CAE data in radar structure collaborative development system[J]. Machinery & Electronics, 2009(12): 39–41 (in Chinese).
    [9] 王丽荣, 陈有芳, 章志兵, 等. 基于NX平台的船舶结构有限元快速建模系统[C]//第十五届中国CAE工程分析技术年会论文集. 上海: 中国力学学会产学研工作委员会, 2019: 65−68.

    WANG L R, CHEN Y F, ZHANG Z B, et al. Finite element rapid modeling system of ship structure based on NX platform[C]//Proceedings of the 15th China CAE Engineering Analysis Technology Annual Conference. Shanghai, China: The Industry, University and Research Work Committee of the Chinese Society of Mechanics, 2019: 65−68 (in Chinese).
    [10] LI C T, WANG D Y. Multi-objective optimisation of a container ship lashing bridge using knowledge-based engineering[J]. Ships and Offshore Structures, 2019, 14(1): 35–52. doi: 10.1080/17445302.2018.1472520
    [11] PARK H S, DANG X P. Structural optimization based on CAD–CAE integration and metamodeling techniques[J]. Computer-Aided Design, 2010, 42(10): 889–902. doi: 10.1016/j.cad.2010.06.003
    [12] ATTENE M, ROBBIANO F, SPAGNUOLO M, et al. Characterization of 3D shape parts for semantic annotation[J]. Computer-Aided Design, 2009, 41(10): 756–763. doi: 10.1016/j.cad.2009.01.003
    [13] FLOTYŃSKI J, WALCZAK K. Customization of 3D content with semantic meta-scenes[J]. Graphical Models, 2016, 88: 23–39. doi: 10.1016/j.gmod.2016.07.001
    [14] LI C T, WANG D Y. Knowledge-based engineering–based method for containership lashing bridge optimization design and structural improvement with functionally graded thickness plates[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 233(3): 760–778.
    [15] POKOJSKI J, SZUSTAKIEWICZ K, WOŹNICKI Ł, et al. Industrial application of knowledge-based engineering in commercial CAD/CAE systems[J]. Journal of Industrial Information Integration, 2022, 25: 100255. doi: 10.1016/j.jii.2021.100255
    [16] 中国船级社. 钢制海船入级规范[S]. 北京: 人民交通出版社, 2019.

    China Classification Society (CCS). Rules and regulations for the construction and classification of sea-going steel ships[S]. Beijing: China Communications Press, 2019 (in Chinese).
    [17] SUN W, MA Q Y, CHEN S. A framework for automated finite element analysis with an ontology-based approach[J]. Journal of Mechanical Science and Technology, 2009, 23(12): 3209–3220. doi: 10.1007/s12206-009-1005-0
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-06-21
  • 网络出版日期:  2023-07-13

目录

    /

    返回文章
    返回