Research on strut optimization of azimuth thruster with contra-rotating propellers
-
摘要: 基于雷诺平均方法与k-ω湍流模型,对不同立柱型式的对转式全回转舵桨分别进行模型尺度和实尺度下的水动力性能预报。研究结果表明,立柱前缘削薄并整体前移的优化方案,使整个舵桨的敞水效率提高1.01%;立柱采用扭曲设计,且切面引入拱度的优化方案,使得敞水效率提高1.15%。通过研究流场特性与后桨伴流监测,发现优化后的立柱可以改善立柱尾部的流动分离现象,提高后桨吸收前桨的尾涡能量,增加后桨流入量,对于提高对转式全回转舵桨的推进性能具有工程实用意义;另外,通过比较模型尺度与实尺度的研究结果,发现模型尺度的流动分离比实尺度严重。Abstract: RANS method and k-ω turbulence model are applied to predict the hydrodynamic performance of Azimuth thruster with Contra-Rotating Propellers for different strut design at model scale and real scale in open water. The result shows that the optimization scheme of strut moving forward and leading edge thinning increases the open water efficiency of the thruster by 1.01%; The optimization scheme of strut adopting twist design as well as strut section introducing camber increases open water efficiency by 1.15%. Flow field observation and wake fraction monitoring of rear propeller shows that the optimized strut can reduce the flow separation at the stern of strut, improve the rear propeller absorption of the wake vortex energy of the front propeller, and increase the inflow of the rear propeller, which is of engineering practical significance for improving the propulsion performance of the Azimuth thruster with Contra-Rotating Propellers. In addition, the flow separation of model scale is more serious than real scale on research of the comparison between model scale and real scale.
-
表 1 前桨与后桨的主要参数
Table 1. Main parameter of front and rear propeller
项目 符号 前桨 后桨 实尺度 模型尺度 实尺度 模型尺度 缩尺比 λ 1 21 1 21 叶数 Z 5 4 直径/m D 4.2 0.2 3.7 0.175 2 弦长/m C0.7 1.098 3 0.052 3 1.2327 0.058 7 螺距比 P0.7/D 1.169 2 1.4121 盘面比 AE/A0 0.584 6 0.605 毂径比 dh/D 0.23 0.203 旋向 - 右旋 左旋 表 2 模拟工况
Table 2. Operating condition
CR16, CR17, CR17.1, CR17.2 符号 实尺度 模型尺度 CR16模型试验 缩尺比 λ 1 21 21 速度/(m·s−1) V 9.9819 2.4583 2.4583 前、后桨转速/(r·s−1) n 2.417 12.500 12.500 进速系数 J 0.9833 0.9833 0.9833 表 3 敞水性能结果
Table 3. Result of open water characteristics
缩尺比 优化
方案前桨
KT1前桨
10KQ1后桨
KT2后桨
10KQ2舵桨装置
KT舵桨装置
10KQ效率
ηλ=1 CR16 0.174 0.312 0.089 0.182 0.223 0.494 0.705 CR17 0.174 0.311 0.092 0.191 0.229 0.502 0.712 CR17.1 0.174 0.311 0.125 0.240 0.249 0.551 0.707 CR17.2 0.174 0.311 0.112 0.220 0.242 0.531 0.713 CR16试验值 -- -- -- -- 0.220 5 0.574 6 -- λ=21 CR16 0.166 0.320 0.107 0.215 0.220 0.534 0.644 CR17 0.168 0.323 0.092 0.198 0.212 0.521 0.637 CR17.1 0.170 0.324 0.096 0.206 0.215 0.530 0.634 CR17.2 0.166 0.320 0.103 0.214 0.221 0.534 0.647 -
[1] 辛公正, 丁恩宝, 唐登海. 对转螺旋桨升力面设计方法[J]. 船舶力学, 2006, 10(2): 40–46.XIN G Z, DING E B, TANG D H. A design method for contra-rotating propeller by lifting-surface method[J]. Journal of Ship Mechanics, 2006, 10(2): 40–46 (in Chinese). [2] 马骋, 钱正芳, 陈科, 等. 双桨式吊舱推进器水动力性能CFD预报方法研究[J]. 船舶力学, 2014, 18(5): 516–523. doi: 10.3969/j.issn.1007-7294.2014.05.005MA C, QIAN Z F, CHEN K, et al. Research on the CFD prediction method of hydrodynamic performance of tandem type podded propulsor[J]. Journal of Ship Mechanics, 2014, 18(5): 516–523 (in Chinese). doi: 10.3969/j.issn.1007-7294.2014.05.005 [3] 杨晨俊, 钱正芳, 马骋. 吊舱对螺旋桨水动力性能的影响[J]. 上海交通大学学报, 2003, 37(8): 1229–1233 (in Chinese). doi: 10.3321/j.issn:1006-2467.2003.08.022YANG C J, QIAN Z F, MA C. Influences of pod on the propeller performance[J]. Journal of Shanghai Jiaotong University, 2003, 37(8): 1229–1233 (in Chinese). doi: 10.3321/j.issn:1006-2467.2003.08.022 [4] 沈兴荣, 蔡荣泉, 冯学梅, 等. 粘性流场中吊舱推进器水动力性能数值研究[J]. 中国造船, 2010, 51(1): 17–26.SHEN X R, CAI R Q, FENG X M, et al. Study on hydrodynamic performance of podded propulsion in viscous flow[J]. Shipbuilding of China, 2010, 51(1): 17–26 (in Chinese). [5] ISLAM M F, VEITCH B, BOSE N, et al. Numerical study of hub taper angle on podded propeller performance[J]. Marine Technology, 2006, 43(1): 1–10. [6] LIU P F, ISLAM M, VEITCH B. Some unsteady propulsive characteristics of a podded propeller unit under maneuvering operation[C]//First International Symposium on Marine Propulsors Smp’ 09. Trondheim, Norway: [s. n. ], 2009: 507−516. [7] HAEMAELAEINEN R, VAN HEERD J. Wave damping aftbody with hybrid podded propulsors[J]. Transactions, 2003, 111: 33–48. [8] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.WANG F J. Computational fluid Dynamics Analysis: Principle and Application of CFD Software[M]. Beijing: Tsinghua University Press, 2004 (in Chinese). [9] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149 [10] 王超, 黄胜, 常欣, 等. 基于滑移网格与RNG k-ε湍流模型的桨舵干扰性能研究[J]. 船舶力学, 2011, 15(7): 715–721.WANG C, HUANG S, CHANG X, et al. Research on the hydrodynamics performance of propeller-rudder interaction based on sliding mesh and RNG k-ε model[J]. Journal of Ship Mechanics, 2011, 15(7): 715–721 (in Chinese). [11] 徐嘉启, 熊鹰, 王展智. 混合式CRP推进器操舵工况水动力性能数值研究[J]. 中国舰船研究, 2017, 12(2): 63–70,99. doi: 10.3969/j.issn.1673-3185.2017.02.008XU J Q, XIONG Y, WANG Z Z. Numerical research of hydrodynamic performance of hybrid CRP podded propulsor in steering conditions[J]. Chinese Journal of Ship Research, 2017, 12(2): 63–70,99 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.008 [12] 黄永生, 杨晨俊, 董小倩. 对转桨推进的高速水下航行体实尺度自航计算与分析[J]. 中国舰船研究, 2018, 13(6): 34–42. doi: 10.19693/j.issn.1673-3185.01118HUANG Y S, YANG C J, DONG X Q. Full-scale simulation and analysis of self-propulsion performance of CRP-propelled high speed underwater vehicles[J]. Chinese Journal of Ship Research, 2018, 13(6): 34–42 (in Chinese). doi: 10.19693/j.issn.1673-3185.01118 [13] 洪方文, 张志荣, 刘登成, 等. 船舶螺旋桨流场及水动力数值分析[J]. 水动力学研究与进展, 2020, 35(1): 68–73.HONG F W, ZHANG Z R, LIU D C, et al. Numerical simulation on flow fields and hydrodynamic performance of ship propeller[J]. Chinese Journal of Hydrodynamics, 2020, 35(1): 68–73 (in Chinese). [14] HEINKE C, HEINKE H J. Open Water and Cavitation Tests with the Powermaster Marine 7 MW CRP Thruster Report 4938, Schiffbau-Versuchsanstalt Potsdam, 2020 (unpublished). -