留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging代理模型的水下目标模型几何参数识别方法

刘江 刘彦森 黎胜

刘江, 刘彦森, 黎胜. 基于Kriging代理模型的水下目标模型几何参数识别方法[J]. 中国舰船研究, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03295
引用本文: 刘江, 刘彦森, 黎胜. 基于Kriging代理模型的水下目标模型几何参数识别方法[J]. 中国舰船研究, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03295
LIU J, LIU Y S, LI S. Geometry parameters recognition method for an underwater target model based on Kriging surrogate model[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03295
Citation: LIU J, LIU Y S, LI S. Geometry parameters recognition method for an underwater target model based on Kriging surrogate model[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–10 doi: 10.19693/j.issn.1673-3185.03295

基于Kriging代理模型的水下目标模型几何参数识别方法

doi: 10.19693/j.issn.1673-3185.03295
基金项目: 水下测控技术重点实验室基金资助项目(6142407190106)
详细信息
    作者简介:

    刘江,男,1995年生,博士生。研究方向:振动噪声分析。E-mail:dlut_lj@mail.dlut.edu.cn

    刘彦森,男,1979年生,博士,研究员。研究方向:振动噪声分析。E-mail:Ysliu0724@yahoo.com.cn

    黎胜,男,1973年生,博士,教授。研究方向:振动噪声分析和控制。E-mail:shengli@dlut.edu.cn

    通信作者:

    黎胜

  • 中图分类号: U674.76

Geometry parameters recognition method for an underwater target model based on Kriging surrogate model

知识共享许可协议
基于Kriging代理模型的水下目标模型几何参数识别方法刘江,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  水下目标参数识别可为目标分类识别提供依据,为此,提出一种基于Kriging代理模型的水下目标参数识别方法。  方法  首先,对敷设声学覆盖层的水下目标模型在螺旋桨和主辅机激励情况下的结构表面低频振动声辐射与声辐射灵敏度进行分析;然后,基于分析结果建立低频声辐射功率代理模型,并基于该代理模型构造由低频声辐射响应特征和目标参数组成的样本空间;最后,基于所构建的样本空间,建立目标参数识别代理模型并选取测试点进行模型验证。  结果  结果显示,测试样本的实际目标参数值与所构建代理模型的目标参数预测值吻合良好;利用有限元法和边界元方法,可以实现考虑阻尼材料频变特性的粘弹性阻尼结构的低频声辐射分析,并能解决商业软件无法大批量处理振动结果文件的问题;影响水下目标模型低频振动声辐射的主要目标参数为目标长度、最大半径、基层壳厚度和声学覆盖层厚度。  结论  基于Kriging代理模型的水下目标参数识别方法可以通过声辐射线谱特征准确预测水下目标模型的主要目标参数值。
  • 图  ISV迭代法算法流程

    Figure  1.  The algorithm flow chart of iterative shift-invert method

    图  水下目标模型及参数

    Figure  2.  The underwater target model and its parameters

    图  典型激励力及作用位置

    Figure  3.  Typical excitation forces and their acting positions

    图  水下目标模型声功率级对比

    Figure  4.  Comparison of the acoustic power level of the underwater target model

    图  水下目标模型关于13个目标参数的声学灵敏度

    Figure  5.  Acoustic sensitivity regarding 13 target parameters of the underwater target model

    图  水下目标模型关于各目标参数的声学灵敏度($T_{\text{s}}^1$和$T_{\text{s}}^2$除外)

    Figure  6.  Acoustic sensitivity regarding each target parameter of the underwater target model (except $T_{\text{s}}^1$ and $T_{\text{s}}^2$)

    图  不同目标参数的水下目标模型的低频声辐射功率级

    Figure  7.  Low-frequency acoustic radiation power level of underwater target model with different target parameters

    图  样本点的声功率级

    Figure  8.  Sound power level of the sample points

    图  测试点代理模型与FEM/BEM方法的声功率级对比

    Figure  9.  Comparison of sound power level of test points between surrogate model and FEM/BEM

    图  10  前4个样本点的功率谱特征

    Figure  10.  Power spectrum characteristics of the first four sample points

    表  水下目标模型参数值

    Table  1.  Parameters of the underwater target model

    艇体参数数值指挥室参数数值艉舵参数数值
    $ L_{\text{s}}^1 $/m7.0$L_{\text{r}}^1$/m3.85$H_{\text{t}}^1$/m1.0
    $L_{\text{s}}^2$/m42$L_{\text{r}}^2$/m2.31$L_{\text{t}}^2$/m1.5
    $L_{\text{s}}^3$/m4.87$L_{\text{r}}^3$/m3.32$L_{\text{t}}^3$/m10.0
    $L_{\text{s}}^4$/m8.13$L_{\text{r}}^4$/m3.32${B_{\text{t}}}$/m0.44
    $D_{\text{s}}^1$/m7.5$L_{\text{r}}^5$/m19.0${H_{\text{t}}}$/m7
    $ D_{\text{s}}^2 $/m5.98$B_{\text{r}}^1$/m2.2
    $D_{\text{s}}^3$/m0.7$ B_{\text{r}}^2 $/m1.9
    $T_{\text{s}}^1$/m0.04$B_{\text{r}}^3$/m1.2
    $T_{\text{s}}^2$/m0.05${H_{\text{r}}}$/m3.5
    下载: 导出CSV

    表  VHB4955 GHM模型拟合参数

    Table  2.  Fitting parameters of VHB4955 GHM model

    参数i = 1i = 2i = 3
    ${G^0}$/Pa7.622 5×1057.622 5×1057.622 5×105
    ${\alpha _i}$8.748 7×1076.838 9×1061.227 3×106
    ${\beta _i}$4.194 7×1043.814 8×1061.905 6×108
    ${\delta _i}$1.999 6×1093.241 4×1099.000 0×109
    下载: 导出CSV

    表  主辅机的不平衡力/力矩频率与幅值

    Table  3.  Frequencies and amplitudes of main and auxiliary machine unbalance force/torque

    发动机 不平衡力矩/力
    2.25 Hz 4.5 Hz
    主机 $M_x^1 = 145\;539.8{\text{N}} \cdot {\text{m}}$
    $M_y^1 = 62\;014.4{\text{N}} \cdot {\text{m}}$
    $M_x^2 = 52\;077.2{\text{N}} \cdot {\text{m}}$
    $M_y^2 = 52\;077.2{\text{N}} \cdot {\text{m}}$
    辅机 $F_{1x}^1 = 2\;187.5{\text{N}}$
    $F_{1y}^1 = - 3\;788.86{\text{N}}$
    $F_{1x}^2 = - 2\;574.5{\text{N}}$
    $F_{1y}^2 = - 4\;459.16{\text{N}}$
    下载: 导出CSV

    表  设计变量的取值范围

    Table  4.  Design variables' value range

    设计变量取值范围
    艇长${L_{\text{s}}}/{\text{m}}$49.6~74.4
    艇体最大半径$ L_{\text{s}}^1/{\text{m}} $3~4.5
    艇体基层壳厚度$T_{\text{s}}^1/{\text{m}}$0.032~0.048
    阻尼层厚度$T_{\text{s}}^2/{\text{m}}$0.04~0.06
    下载: 导出CSV

    表  代理模型样本点设计变量

    Table  5.  Sample points' design variables of the surrogate model

    样本${L_{\text{S}}}/{\text{m}}$$R_{\text{S}}^1/{\text{m}}$$T_{\text{S}}^1/{\text{m}}$$T_{\text{S}}^2/{\text{m}}$样本${L_{\text{S}}}/{\text{m}}$$R_{\text{S}}^1/{\text{m}}$$T_{\text{S}}^1/{\text{m}}$$T_{\text{S}}^2/{\text{m}}$
    170.584 624.50.046 3590.057 4362162.317 954.423 0770.036 9230.041 026
    258.502 563.692 3080.032 4100.054 8722261.682 053.076 9230.043 0770.058 974
    357.866 674.461 5380.039 7950.046 1542369.948 723.769 2310.038 5640.048 718
    466.133 333.038 4620.040 2050.053 8462450.871 793.423 0770.041 8460.046 667
    553.415 3830.033 6410.042 5642573.128 214.076 9230.038 1540.053 333
    665.497 443.807 6920.047 5900.045 1282660.410 264.230 7690.044 7180.044 615
    772.492 314.307 6920.032 8210.050 2562763.589 743.269 2310.035 2820.055 385
    851.507 693.192 3080.047 1790.049 7442854.051 283.730 7690.041 4360.051 282
    964.861 544.115 3850.042 6670.042955.323 084.153 8460.0320.047 692
    1059.138 463.384 6150.037 3330.063068.676 923.346 1540.0480.052 308
    1171.856 413.230 7690.042 2560.043 0773164.225 643.653 8460.045 1280.059 487
    1252.143 594.269 2310.037 7440.056 9233259.774 363.846 1540.034 8720.040 513
    1366.769 233.538 4620.036 1030.050 7693369.312 824.192 3080.040 6150.042 051
    1457.230 773.961 5380.043 8970.049 2313454.687 183.307 6920.039 3850.057 949
    1573.764 103.461 5380.044 3080.055 8973552.779 493.884 6150.045 5380.054 359
    1650.235 904.038 4620.035 6920.044 1033671.220 513.615 3850.034 4620.045 641
    1774.43.115 3850.036 5130.047 1793762.953 853.50.038 9740.043 590
    1849.64.384 6150.043 4870.052 8213861.046 1540.041 0260.056 410
    1968.041 033.923 0770.033 2310.058 4623967.405 134.346 1540.045 9490.048 205
    2055.958 973.576 9230.046 7690.041 5384056.594 873.153 8460.034 0510.051 795
    下载: 导出CSV

    表  目标参数识别模型样本点设计变量

    Table  6.  Design variables of sample points of the target parameter recognition model

    样本线谱数${\omega _1}$/Hz${\omega _2}$/Hz${\omega _3}$/Hz样本线谱数${\omega _1}$/Hz${\omega _2}$/Hz${\omega _3}$/Hz样本线谱数$ \omega_{1} $/Hz$ \omega_{2} $/Hz$ \omega_{3} $/Hz
    1121.22.135.615101.219.833.42971.516.434.7
    2101.514.530.81681.718.838.630111.39.735.3
    391.416.333.617101.21.732.631911.526.537.6
    412211.535.81860.81.720.33291.46.330.1
    590.71.731.219101.42838.73391.211.625.8
    681.311.826.42071.514.231.93480.713.731.4
    771.224.734.42181.314.530.83580.71.635.6
    81014.332.239.5221212.223.938.83691.23.434.5
    9101.36.327.72391.210.235.23771.411.626.8
    101212.428.639.92471.71635.63871.413.730.1
    1191.23.433.42591.21.734.339100.51.21.8
    1280.71.637.22691.414.531.140101.612.529.3
    1381.310.735.827121.410.737.5
    1461.514.932.82880.71.634.1
    下载: 导出CSV
  • [1] 程玉胜, 李智忠, 邱家兴. 水声目标识别[M]. 北京: 科学出版社, 2018.

    CHENG Y S, LI Z Z, QIU J X. Underwater acoustic target recognition[M]. Beijing: Science Press, 2018: 6-15 (in Chinese).
    [2] 常立晔. 二维声波反散射问题的数值方法与Nyström方法的应用[D]. 西安: 西北大学, 2009.

    CHANG L Y. Numerical methods for two-dimensional acoustic backscattering problems and application of Nyström method[D]. Xi'an: Northwest University, 2009 (in Chinese).
    [3] 周磊, 韩旭, 李光耀. 基于噪声分布的驾驶室几何参数反求技术[J]. 机械制造, 2006, 44(6): 15–17.

    ZHOU L, HAN X, LI G Y. Inverse technique of geometric parameters of cab based on noise distribution[J]. Machinery, 2006, 44(6): 15–17 (in Chinese).
    [4] ALLEN A R, PRZEKOP A. Vibroacoustic tailoring of a rod-stiffened composite fuselage panel with multidisciplinary considerations[J]. Journal of Aircraft, 2015, 52(2): 692–702. doi: 10.2514/1.C033071
    [5] BAKLOUTI A, DAMMAK K, EL HAMI A. Uncertainty analysis based on kriging meta-model for acoustic-structural problems[J]. Applied Sciences, 2022, 12(3): 1503. doi: 10.3390/app12031503
    [6] 黎胜, 杨婧媛. 水下加筋板振动声辐射的代理模型研究[J]. 声学学报, 2010, 35(6): 659–664.

    LI S, YANG J Y. Research on surrogate models for structural vibration and acoustic radiation of underwater stiffened plates[J]. Acta Acustica, 2010, 35(6): 659–664 (in Chinese).
    [7] 郭明慧, 黎胜. 一种基于代理模型的水下目标分类识别方法[J]. 舰船科学技术, 2014, 36(7): 76–79.

    GUO M H, LI S. Underwater target recognition method based on surrogate model[J]. Ship Science and Technology, 2014, 36(7): 76–79 (in Chinese).
    [8] 郭明慧, 黎胜. 运用代理模型方法预测潜艇结构模型的振动声辐射[J]. 中国舰船研究, 2013, 8(6): 69–74. doi: 10.3969/j.issn.1673-3185.2013.06.012

    GUO M H, LI S. A surrogate model for structural vibration and acoustic radiation of underwater submarine structures[J]. Chinese Journal of Ship Research, 2013, 8(6): 69–74 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.06.012
    [9] 邓银凤. 基于复模态的粘弹性阻尼复合结构声辐射分析[D]. 大连: 大连理工大学, 2020.

    DENG Y F. Research on sound radiation properties of complex vibration modes in viscoelastic damping composite structure[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
    [10] 窦乾赫. 粘弹性阻尼结构的复模态及谐响应分析[D]. 大连: 大连理工大学, 2020.

    DOU Q H. Complex modal analysis and harmonic analysis of viscoelastic damped structures[D]. Dalian: Dalian University of Technology, 2020 (in Chinese).
    [11] 黎胜, 赵德有. 用有限元/边界元方法进行结构声辐射的模态分析[J]. 声学学报, 2001, 26(2): 174–179.

    LI S, ZHAO D Y. Modal analysis of structural acoustic radiation using FEM/BEM[J]. Acta Acustica, 2001, 26(2): 174–179 (in Chinese).
    [12] GOLLA D F, HUGHES P C. Dynamics of viscoelastic structures—a time-domain, finite element formulation[J]. Journal of Applied Mechanics, 1985, 52(4): 897–906. doi: 10.1115/1.3169166
    [13] HAMDAOUI M, AKOUSSAN K, DAYA E M. Comparison of non-linear eigensolvers for modal analysis of frequency dependent laminated visco-elastic sandwich plates[J]. Finite Elements in Analysis and Design, 2016, 121: 75–85. doi: 10.1016/j.finel.2016.08.001
    [14] 陈立涛. 结构声学灵敏度计算方法研究[D]. 合肥: 合肥工业大学, 2013.

    CHEN L T. Study on the computational methods of the structural acoustic sensitivity[D]. Hefei: Hefei University of Technology, 2013 (in Chinese).
    [15] 刘林芽, 秦佳良, 宋瑞, 等. 基于声学灵敏度的槽形梁结构参数影响分析[J]. 噪声与振动控制, 2017, 37(5): 88–91.

    LIU L Y, QIN J L, SONG R, et al. Study on structure-acoustic sensitivity analysis of trough girders for rail transit[J]. Noise and Vibration Control, 2017, 37(5): 88–91 (in Chinese).
    [16] 武多听, 陈锋, 耿厚才, 等. 螺旋桨激励力作用下舰船振动及水下声辐射特性研究[J]. 噪声与振动控制, 2020, 40(3): 164-169.

    WU D T, CHEN F, GENG H C, et al. Research on the ship vibration and underwater acoustic radiation characteristics under propeller excitation[J]. Noise and Vibration Control, 2022, 40(3): 164-169 (in Chinese).
    [17] 邹春平, 陈端石, 华宏星. 船舶结构振动特性研究[J]. 船舶力学, 2003, 7(2): 102–115. doi: 10.3969/j.issn.1007-7294.2003.02.014

    ZOU C P, CHEN D S, HUA H X. Study on structural vibration characteristics of ship[J]. Journal of Ship Mechanics, 2003, 7(2): 102–115 (in Chinese). doi: 10.3969/j.issn.1007-7294.2003.02.014
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-06-01
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回