基于Bagging-GPR的舰船目标RCS频率外推技术

Bagging-GPR method for ship RCS extrapolation in frequency domain

  • 摘要:
      目的  针对高频情况下使用传统仿真、实测方法获取舰船目标RCS受限的问题,提出一种结合引导聚集(Bagging)算法与基于谱混合协方差函数的高斯过程回归(GPR)模型的混合方法(Bagging-GPR),从而根据仿真和实测得到的低频段RCS数据,准确高效地外推高频段的RCS数据。
      方法  首先,根据舰船目标低频段单站RCS数据,以重采样的方式获取训练子集,并使用基于谱混合协方差函数的GPR模型对各子集的RCS数据在频域上进行外推;然后,通过Bagging算法将各子集的外推结果进行混合,以进一步提高GPR的外推精度和鲁棒性;最后,分别在舰船模型的仿真数据集和实测数据集上对Bagging-GPR混合方法的性能予以试验验证。
      结果  结果表明,Bagging-GPR可以实现实时外推,预测值与仿真值、实测值基本一致,均方根误差很小。
      结论  所提方法具有较高的频域RCS数据外推精度和良好的鲁棒性,可为快速获取目标的高频RCS特征提供一种新的技术手段。

     

    Abstract:
      Objective   To solve the difficulty of obtaining a radar cross section (RCS) using traditional simulation and measurement methods under high frequency, this study proposes a hybrid method which combines bootstrap aggregation (Bagging) and spectral mixture covariance function-based Gaussian process regression (GPR) model to predict the RCS of ships in the high frequency band efficiently and accurately according to the data in the low frequency band.
      Methods  First, according to the monostatic RCS data of ships in the low frequency band, the training subset is obtained by resampling. The spectral mixture covariance function-based GPR model is then used to extrapolate the RCS data of each subset in the frequency domain. Finally, the extrapolation results of each subset are mixed by the Bagging method to further improve the extrapolation accuracy and robustness of GPR. The proposed method is then tested on the simulation data and measured data respectively.
      Results  The predicted value of the Bagging-GPR hybrid method is basically consistent with the simulated value and measured value, and the root mean square error is very small.
      Conclusions  The Bagging-GPR hybrid method has high RCS extrapolation accuracy and good robustness in the frequency domain, providing a new technical means for quickly obtaining the high-frequency RCS characteristics of targets.

     

/

返回文章
返回