[1] |
赵欣阳, 祝熠, 梅志远, 等. 不同筋材对复合材料加筋板水中透声性能影响试验研究[J]. 中国舰船研究, 2023, 18(3): 197–204. doi: 10.19693/j.issn.1673-3185.02535ZHAO X Y, ZHU Y, MEI Z Y, et al. Experimental study on effect of different reinforcements on sound tranmission performance of composite stiffened plates in water[J]. Chinese Journal of Ship Research, 2023, 18(3): 197–204 (in Chinese). doi: 10.19693/j.issn.1673-3185.02535
|
[2] |
李广生, 陈美霞, 原春晖. 基于陆上振动测试的水中圆柱壳结构声振响应计算方法[J]. 中国舰船研究, 2022, 17(6): 252–260. doi: 10.19693/j.issn.1673-3185.02414LI G S, CHEN M X, YUAN C H. Calculation method of underwater acoustic and vibration response of cabin segment based on onshore vibration test[J]. Chinese Journal of Ship Research, 2022, 17(6): 252–260 (in Chinese). doi: 10.19693/j.issn.1673-3185.02414
|
[3] |
廖健, 何琳, 陈宗斌, 等. 潜艇操舵系统噪声综述[J]. 中国舰船研究, 2022, 17(5): 74–84. doi: 10.19693/j.issn.1673-3185.02391LIAO J, HE L, CHEN Z B, et al. Overview of submarine steering system noise[J]. Chinese Journal of Ship Research, 2022, 17(5): 74–84 (in Chinese). doi: 10.19693/j.issn.1673-3185.02391
|
[4] |
左翔, 陈欢. 基于矢量声压组合基阵的柱面分布噪声源近场高分辨定位方法[J]. 中国舰船研究, 2017, 12(4): 147–150. doi: 10.3969/j.issn.1673-3185.2017.04.023ZUO X, CHEN H. Near-field and high-resolution cylind-rical noise source location method based on vector sound pressure array[J]. Chinese Journal of Ship Research, 2017, 12(4): 147–150 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.023
|
[5] |
胡清扬, 李灿灿, 郭世旭. 虚拟声源定位的等效源近场声全息算法[J]. 舰船科学技术, 2022, 44(11): 164–168. doi: 10.3404/j.issn.1672-7649.2022.11.034HU Q Y, LI C C, GUO S X. Equivalent source near-field acoustic holography algorithm based on virtual sound source localization[J]. Ship Science and Technology, 2022, 44(11): 164–168 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.11.034
|
[6] |
李彪, 李希友, 王志强, 等. 统计最优柱面近场声全息参数选取方法研究[J]. 舰船科学技术, 2018, 40(3): 120–127.LI B, LI X Y, WANG Z Q, et al. Research on parameter selection for the statistically optimal cylindrical near-field acoustical holography[J]. Ship Science and Technology, 2018, 40(3): 120–127 (in Chinese).
|
[7] |
陈汉涛, 郭文勇, 韩江桂, 等. 船舶机舱内高频弱声源近场声全息方法[J]. 舰船科学技术, 2019, 41(11): 138–143,147.CHEN H T, GUO W Y, HAN J G, et al. Near-field acoustic holography method for high frequency weak sound source in ship cabin[J]. Ship Science and Technology, 2019, 41(11): 138–143,147 (in Chinese).
|
[8] |
WANG J Z, ZHANG Z F, HUANG Y Z, et al. A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measur-ing surface[J]. Measurement, 2021, 177: 109297. doi: 10.1016/j.measurement.2021.109297
|
[9] |
WILLIAMS E G. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. San Diego: Academic Press, 1999: 67-89.
|
[10] |
CHARDON G, DAUDET L, PEILLOT A, et al. Near-field acoustic holography using sparse regularization and compressive sampling principles[J]. The Journal of the Acoustical Society of America, 2012, 132(3): 1521–1534. doi: 10.1121/1.4740476
|
[11] |
FERNANDEZ-GRAND E, XENAKI A. Compressive sensing with a spherical microphone array[J]. The Journal of the Acoustical Society of America, 2016, 139(2): EL45–EL49. doi: 10.1121/1.4942546
|
[12] |
HALD J. A comparison of iterative sparse equivalent source methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3758–3769. doi: 10.1121/1.5042223
|
[13] |
HALD J. Fast wideband acoustical holography[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1508–1517. doi: 10.1121/1.4944757
|
[14] |
FERNANDEZ-GRAND E, XENAKI A, GERSTOFT P. A sparse equivalent source method for near-field acoustic holography[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 532–542. doi: 10.1121/1.4974047
|
[15] |
BI C X, LIU Y, XU, L, et al. Sound field reconstruction using compressed modal equivalent point source method[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 73–79. doi: 10.1121/1.4973567
|
[16] |
BI C X, ZHANG F M, ZHANG X Z, et al. Sound field reconstruction using block sparse Bayesian learning equivalent source method[J]. The Journal of the Acoustical Society of America, 2022, 151(4): 2378–2390. doi: 10.1121/10.0010103
|
[17] |
伍松, 魏晟弘, 吴小龙. 压缩感知等效源法对板件近场重构精度改进的研究[J]. 机械科学与技术, 2023, 42(6): 870-877.WU S, WEI S H, WU X L, Improvement of near-field reconstruction accuracy of plate using compressed sensing equivalent source method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 870-877 (in Chinese).
|
[18] |
JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331–345. doi: 10.1016/j.jsv.2016.05.027
|
[19] |
ZHANG Y Y, LI X Y, GAO L, et al. Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method[J]. Measurement, 2020, 151: 107232. doi: 10.1016/j.measurement.2019.107232
|
[20] |
OLIVIERI M, PEZZOLI M, MALVERMI R, et al. Near-field acoustic holography analysis with convolutional neural networks[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Seoul, Korea: Institute of Noise Control Engineering, 2020: 5607−5618.
|
[21] |
OLIVIERI M, PEZZOLI M, ANTONACCI F, et al. A physics-informed neural network approach for nearfield acoustic holography[J]. Sensors, 2021, 21(23): 7834. doi: 10.3390/s21237834
|