留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维N型卷积神经网络和频域注意力–亥姆霍兹正则化的近场声源重建方法

籍宇阳 王德禹

籍宇阳, 王德禹. 基于三维N型卷积神经网络和频域注意力–亥姆霍兹正则化的近场声源重建方法[J]. 中国舰船研究, 2023, 19(X): 1–11 doi: 10.19693/j.issn.1673-3185.03127
引用本文: 籍宇阳, 王德禹. 基于三维N型卷积神经网络和频域注意力–亥姆霍兹正则化的近场声源重建方法[J]. 中国舰船研究, 2023, 19(X): 1–11 doi: 10.19693/j.issn.1673-3185.03127
JI Y Y, WANG D Y. Near-field acoustic reconstruction method based on three-dimensional N-shaped convolution neural network and frequency focal-KH regularization [J]. Chinese Journal of Ship Research, 2023, 19(X): 1–11 doi: 10.19693/j.issn.1673-3185.03127
Citation: JI Y Y, WANG D Y. Near-field acoustic reconstruction method based on three-dimensional N-shaped convolution neural network and frequency focal-KH regularization [J]. Chinese Journal of Ship Research, 2023, 19(X): 1–11 doi: 10.19693/j.issn.1673-3185.03127

基于三维N型卷积神经网络和频域注意力–亥姆霍兹正则化的近场声源重建方法

doi: 10.19693/j.issn.1673-3185.03127
详细信息
    作者简介:

    籍宇阳,男,1998年生,硕士生。研究方向:舰船噪声源识别。Email:jiyuyang@sjtu.edu.cn

    王德禹,男,1963年生,博士,教授,博士生导师。研究方向:船舶与海洋工程结构力学,结构优化设计与 可靠性分析,结构极限强度与试验技术研究。E-mail:dywang@sjtu.edu.cn

    通信作者:

    王德禹

  • 中图分类号: TB52;U661.44

Near-field acoustic reconstruction method based on three-dimensional N-shaped convolution neural network and frequency focal-KH regularization

知识共享许可协议
基于三维N型卷积神经网络和频域注意力–亥姆霍兹正则化的近场声源重建方法籍宇阳,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对全息面、低采样率条件下近场声源重建误差较大的问题,提出一种高分辨率、低误差的平面声源表面法向振速重建的深度神经网络框架。  方法  首先,建立用于近场声源重建问题的三维N型卷积神经网络框架(包含预编码器),通过提取空间声场频域内的特征,以弥补空间信息的稀疏性;然后,提出频域注意力机制,设计包含频域注意力–归一化重建均方误差、亥姆霍兹正则项的损失函数,以自适应增加频域内难训练样本的损失权重,从而提升声源在高频和本征特征区间的重建精度;最后,通过Matlab对COMSOL Multiphysics软件进行二次开发,建立矩形薄板声振模型的训练集和测试集,开展对比验证。  结果  对比结果表明,该方法在验证集上100~2 000 Hz范围内的平均重建误差仅为4.96%,重建精度明显高于SRCNN和PV-NN。  结论  该研究成果可以降低近场声源重建实船应用中的全息面采样点数量,同时可保证较高的声源面法向振速重建精度。
  • 图  振动声源向外辐射声场的示意图

    Figure  1.  Schematic diagram of vibrational sound source acoustic radiation

    图  声源面和全息面示意图

    Figure  2.  Illustration of source surface and holography surface

    图  深度学习训练的流程图

    Figure  3.  Procedure of deep learning training

    图  3D NCNN-NAH网络架构图

    Figure  4.  Framework of 3D NCNN-NAH

    图  预编码器中双线性插值上采样模块

    Figure  5.  Bilinear interpolation block in pre-encoder

    图  残差结构示意图

    Figure  6.  Illustration of residual block

    图  反卷积模块示意图

    Figure  7.  Illustration of deconvolution block

    图  数据集中重建声源表面重建点的法相位移随频域变化图

    Figure  8.  Displacement of the reconstructed points on sound source varies in frequency domain in training dataset

    图  不同频率下3D NCNN-NAH重建效果和仿真得到的真实值对比

    Figure  9.  Comparison of theoretical velocity and reconstruction effect from 3D NCNN-NAH in different frequency

    图  10  3D NCNN-NAH, SRCNN,PV-NN在不同频域范围内的误差对比

    Figure  10.  Comparison of the reconstruction errors of 3D NCNN, SRCNN, PV-NN in frequency domains

    图  11  在频域范围内是否包含预编码器的重建误差对比

    Figure  11.  Comparison of reconstruction errors with and without pre-encoder in the frequency domain

    图  12  NCNN-NAH在FSFLos,FFS-KHLoss组合监督与MSELoss监督下的频域范围内的重建误差对比

    Figure  12.  Comparison of reconstruction errors of NCNN-NAH in frequency domain under FSFLos, FFS-KHLoss combination supervision, and MSELoss supervision

    图  13  全息面采样点数量与重建误差的关系

    Figure  13.  The relationship between different sampling numbers on holography surface and reconstruction error

    图  14  不同信噪比与重建误差的关系

    Figure  14.  The relationship between different SNRs and reconstruction errors

  • [1] 赵欣阳, 祝熠, 梅志远, 等. 不同筋材对复合材料加筋板水中透声性能影响试验研究[J]. 中国舰船研究, 2023, 18(3): 197–204. doi: 10.19693/j.issn.1673-3185.02535

    ZHAO X Y, ZHU Y, MEI Z Y, et al. Experimental study on effect of different reinforcements on sound tranmission performance of composite stiffened plates in water[J]. Chinese Journal of Ship Research, 2023, 18(3): 197–204 (in Chinese). doi: 10.19693/j.issn.1673-3185.02535
    [2] 李广生, 陈美霞, 原春晖. 基于陆上振动测试的水中圆柱壳结构声振响应计算方法[J]. 中国舰船研究, 2022, 17(6): 252–260. doi: 10.19693/j.issn.1673-3185.02414

    LI G S, CHEN M X, YUAN C H. Calculation method of underwater acoustic and vibration response of cabin segment based on onshore vibration test[J]. Chinese Journal of Ship Research, 2022, 17(6): 252–260 (in Chinese). doi: 10.19693/j.issn.1673-3185.02414
    [3] 廖健, 何琳, 陈宗斌, 等. 潜艇操舵系统噪声综述[J]. 中国舰船研究, 2022, 17(5): 74–84. doi: 10.19693/j.issn.1673-3185.02391

    LIAO J, HE L, CHEN Z B, et al. Overview of submarine steering system noise[J]. Chinese Journal of Ship Research, 2022, 17(5): 74–84 (in Chinese). doi: 10.19693/j.issn.1673-3185.02391
    [4] 左翔, 陈欢. 基于矢量声压组合基阵的柱面分布噪声源近场高分辨定位方法[J]. 中国舰船研究, 2017, 12(4): 147–150. doi: 10.3969/j.issn.1673-3185.2017.04.023

    ZUO X, CHEN H. Near-field and high-resolution cylind-rical noise source location method based on vector sound pressure array[J]. Chinese Journal of Ship Research, 2017, 12(4): 147–150 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.023
    [5] 胡清扬, 李灿灿, 郭世旭. 虚拟声源定位的等效源近场声全息算法[J]. 舰船科学技术, 2022, 44(11): 164–168. doi: 10.3404/j.issn.1672-7649.2022.11.034

    HU Q Y, LI C C, GUO S X. Equivalent source near-field acoustic holography algorithm based on virtual sound source localization[J]. Ship Science and Technology, 2022, 44(11): 164–168 (in Chinese). doi: 10.3404/j.issn.1672-7649.2022.11.034
    [6] 李彪, 李希友, 王志强, 等. 统计最优柱面近场声全息参数选取方法研究[J]. 舰船科学技术, 2018, 40(3): 120–127.

    LI B, LI X Y, WANG Z Q, et al. Research on parameter selection for the statistically optimal cylindrical near-field acoustical holography[J]. Ship Science and Technology, 2018, 40(3): 120–127 (in Chinese).
    [7] 陈汉涛, 郭文勇, 韩江桂, 等. 船舶机舱内高频弱声源近场声全息方法[J]. 舰船科学技术, 2019, 41(11): 138–143,147.

    CHEN H T, GUO W Y, HAN J G, et al. Near-field acoustic holography method for high frequency weak sound source in ship cabin[J]. Ship Science and Technology, 2019, 41(11): 138–143,147 (in Chinese).
    [8] WANG J Z, ZHANG Z F, HUANG Y Z, et al. A 3D convolutional neural network based near-field acoustical holography method with sparse sampling rate on measur-ing surface[J]. Measurement, 2021, 177: 109297. doi: 10.1016/j.measurement.2021.109297
    [9] WILLIAMS E G. Fourier acoustics: sound radiation and nearfield acoustical holography[M]. San Diego: Academic Press, 1999: 67-89.
    [10] CHARDON G, DAUDET L, PEILLOT A, et al. Near-field acoustic holography using sparse regularization and compressive sampling principles[J]. The Journal of the Acoustical Society of America, 2012, 132(3): 1521–1534. doi: 10.1121/1.4740476
    [11] FERNANDEZ-GRAND E, XENAKI A. Compressive sensing with a spherical microphone array[J]. The Journal of the Acoustical Society of America, 2016, 139(2): EL45–EL49. doi: 10.1121/1.4942546
    [12] HALD J. A comparison of iterative sparse equivalent source methods for near-field acoustical holography[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3758–3769. doi: 10.1121/1.5042223
    [13] HALD J. Fast wideband acoustical holography[J]. The Journal of the Acoustical Society of America, 2016, 139(4): 1508–1517. doi: 10.1121/1.4944757
    [14] FERNANDEZ-GRAND E, XENAKI A, GERSTOFT P. A sparse equivalent source method for near-field acoustic holography[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 532–542. doi: 10.1121/1.4974047
    [15] BI C X, LIU Y, XU, L, et al. Sound field reconstruction using compressed modal equivalent point source method[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 73–79. doi: 10.1121/1.4973567
    [16] BI C X, ZHANG F M, ZHANG X Z, et al. Sound field reconstruction using block sparse Bayesian learning equivalent source method[J]. The Journal of the Acoustical Society of America, 2022, 151(4): 2378–2390. doi: 10.1121/10.0010103
    [17] 伍松, 魏晟弘, 吴小龙. 压缩感知等效源法对板件近场重构精度改进的研究[J]. 机械科学与技术, 2023, 42(6): 870-877.

    WU S, WEI S H, WU X L, Improvement of near-field reconstruction accuracy of plate using compressed sensing equivalent source method[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(6): 870-877 (in Chinese).
    [18] JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331–345. doi: 10.1016/j.jsv.2016.05.027
    [19] ZHANG Y Y, LI X Y, GAO L, et al. Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method[J]. Measurement, 2020, 151: 107232. doi: 10.1016/j.measurement.2019.107232
    [20] OLIVIERI M, PEZZOLI M, MALVERMI R, et al. Near-field acoustic holography analysis with convolutional neural networks[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Seoul, Korea: Institute of Noise Control Engineering, 2020: 5607−5618.
    [21] OLIVIERI M, PEZZOLI M, ANTONACCI F, et al. A physics-informed neural network approach for nearfield acoustic holography[J]. Sensors, 2021, 21(23): 7834. doi: 10.3390/s21237834
  • 加载中
图(14)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-12
  • 修回日期:  2022-12-22
  • 网络出版日期:  2022-12-26

目录

    /

    返回文章
    返回