留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于萤火虫算法的随机工时下船舶维修工期优化

陈志敏 夏源 王鹏 王正湖 张利平

陈志敏, 夏源, 王鹏, 等. 基于萤火虫算法的随机工时下船舶维修工期优化[J]. 中国舰船研究, 2023, 19(X): 1–6 doi: 10.19693/j.issn.1673-3185.03085
引用本文: 陈志敏, 夏源, 王鹏, 等. 基于萤火虫算法的随机工时下船舶维修工期优化[J]. 中国舰船研究, 2023, 19(X): 1–6 doi: 10.19693/j.issn.1673-3185.03085
CHEN Z M, XIA Y, WANG P, et al. Improved firefly algorithm for the stochastic duration optimization of the ship maintenance[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–6 doi: 10.19693/j.issn.1673-3185.03085
Citation: CHEN Z M, XIA Y, WANG P, et al. Improved firefly algorithm for the stochastic duration optimization of the ship maintenance[J]. Chinese Journal of Ship Research, 2023, 19(X): 1–6 doi: 10.19693/j.issn.1673-3185.03085

基于萤火虫算法的随机工时下船舶维修工期优化

doi: 10.19693/j.issn.1673-3185.03085
基金项目: 国家自然科学基金资助项目(51875420)
详细信息
    作者简介:

    陈志敏,男,1982年生,博士,高级工程师

    张利平,女,1983年生,博士,教授。研究方向:项目调度与智能计算。E-mail:zhangliping@wust.edu.cn

    通信作者:

    张利平

  • 中图分类号: U673.2

Improved firefly algorithm for the stochastic duration optimization of the ship maintenance

知识共享许可协议
基于萤火虫算法的随机工时下船舶维修工期优化陈志敏,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对船舶维修牵连工程复杂、空间干涉多、任务工时不确定,提出一种解决随机工时下船舶维修工期优化的模型和算法。  方法  基于情景理念设计维修工程的期望工期指标,构建该问题的数学模型;基于并行调度模式解码,提出一种改进萤火虫算法求解该模型;采用工程案例测试集和某船舶坞内维修工程实例,验证所提模型和算法的性能。  结果  某船舶坞内维修工程实例优化结果表明,其工期估值为89.6 d,置信度95.6%,与原方法工期相比减少13.4 d,可缩短13.1%的工期。  结论  改进的萤火虫算法可有效优化船舶维修工程的工期,为不确定条件下的船舶维修进度计划制定提供依据。
  • 图  解码流程图

    Figure  1.  The flowchart of encoding

    图  不同算法的相对分析误差

    Figure  2.  RPD value for different algorithms

    图  改进萤火虫算法收敛图

    Figure  3.  Convergence graph for the improved firefly algorithm

    表  算法对比结果

    Table  1.  Comparison results of algorithm

    序号GAABCPSOSOAFA
    J30_145.5748.7650.9651.0345.83
    J30_248.6648.3347.7148.2149.79
    J30_348.4848.0448.6548.8247.99
    J30_462.4263.6264.0163.9963.46
    J30_541.8843.3543.4440.0540.98
    J30_647.9148.3252.0249.2148.30
    J30_760.1059.5461.1861.6660.47
    J30_856.0655.7157.4955.8755.34
    J30_953.2952.1455.7653.3451.41
    J30_1046.4847.3551.3347.8747.53
    J60_183.1987.6689.4290.1178.41
    J60_280.1083.1279.9580.0374.05
    J60_376.2376.0988.0278.4672.23
    J60_491.4094.7797.6595.292.01
    J60_579.3183.4585.2186.5276.49
    J60_666.7671.7171.3370.2766.37
    J60_779.8187.9787.9986.2479.29
    J60_888.7698.4293.6791.5681.84
    J60_993.34101.1298.2998.9489.5
    J60_1083.3489.0789.6684.8281.28
    J120_1149.75186.50154.55155.18144.24
    J120_2155.47192.88155.69162.83149.00
    J120_3161.64176.92164.85165.94151.26
    J120_4136.75166.60152.29131.76133.04
    J120_5144.93190.90170.22153.00144.46
    J120_6114.88143.79125.51127.43112.17
    J120_7154.89204.65177.12172.18135.89
    J120_8140.21171.43151.39149.58147.66
    J120_9159.11185.86153.54161.10152.17
    J120_10147.62176.66152.52164.14138.65
    运行时间/s5 49610 3395 5255 56198 314
    下载: 导出CSV

    表  部分工程案例数据

    Table  2.  Part of the project case data

    序号名称前置
    条件
    工时数/d工人
    1进坞[8.5, 15.5]32
    2左右螺旋桨桨叶清除污垢1[8.5, 15.5]10
    3左右尾轴机械密封2[12.0, 20.0]16
    4左右艉轴舱喷射泵3[0.6, 3.4]2
    5左右艉轴舱4[1.3, 4.7]2
    6舵机右舵轴轴承16.08
    7舵叶1[8.5, 15.5]14
    81,2,3,4#液压[12.0, 20.0]10
    9舵机监控箱[5.2, 10.8]2
    101号油缸放气阀[0.1, 2.0]1
    11应急舵进油阀[0.1, 2.0]1
    12舵机隔离旁通阀组1[2.0, 6.0]2
    13舵机备用油箱1[0.6, 3.4]2
    14舵机冷却水压力表1[0.1, 2.0]1
    下载: 导出CSV
  • [1] BALLESTÍN F. When it is worthwhile to work with the stochastic RCPSP?[J]. Journal of Scheduling, 2007, 10(3): 153–166. doi: 10.1007/s10951-007-0012-1
    [2] 张思, 吕梦晴, 代剑环, 等. 基于不确定性操作时间的岸桥调度优化研究[J]. 工业工程与管理, 2020, 25(5): 50–58. doi: 10.19495/j.cnki.1007-5429.2020.05.007

    ZHANG S, LV M Q, DAI J H, et al. Research on quay crane scheduling optimization based on the uncertainty of operation time[J]. Industrial Engineering and Management, 2020, 25(5): 50–58 (in Chinese). doi: 10.19495/j.cnki.1007-5429.2020.05.007
    [3] HERROELEN W, LEUS R. Project scheduling under uncertainty: survey and research potentials[J]. European Journal of Operational Research, 2005, 165(2): 289–306. doi: 10.1016/j.ejor.2004.04.002
    [4] RAHMAN H F, CHAKRABORTTY R K, RYAN M J. Managing uncertainty and disruptions in resource constrained project scheduling problems: a real-time reactive approach[J]. IEEE Access, 2021, 9: 45562–45586. doi: 10.1109/ACCESS.2021.3063766
    [5] BONNAL P, GOURC D, LACOSTE G. Where do we stand with fuzzy project scheduling?[J]. Journal of Construction Engineering and Management, 2004, 130(1): 114–123. doi: 10.1061/(ASCE)0733-9364(2004)130:1(114)
    [6] 王艳婷, 何正文, 和媛媛. 随机环境下基于成本经济的项目调度权衡优化研究[J]. 运筹与管理, 2021, 30(12): 20–27.

    WANG Y T, HE Z W, HE Y Y. Study of project scheduling trade-off optimization based on cost economy under stochastic environment[J]. Operations Research and Management Science, 2021, 30(12): 20–27 (in Chinese).
    [7] CHEN H J, ZHANG J, LI R, et al. A two-stage genetic programming framework for stochastic resource constrained multi-project scheduling problem under new project insertions[J]. Applied Soft Computing, 2022, 124: 109087. doi: 10.1016/j.asoc.2022.109087
    [8] MÖHRING R H, RADERMACHER F J, WEISS G. Stochastic scheduling problems I-General strategies[J]. Zeitschrift Für Operations Research, 1984, 28(7): 193–260.
    [9] 江璞玉, 刘均, 周奇, 等. 大规模黑箱优化问题元启发式求解方法研究进展[J]. 中国舰船研究, 2021, 16(4): 1–18. doi: 10.19693/j.issn.1673-3185.02248

    JIANG P Y, LIU J, ZHOU Q, et al. Advances in meta-heuristic methods for large-scale black-box optimization problems[J]. Chinese Journal of Ship Research, 2021, 16(4): 1–18. doi: 10.19693/j.issn.1673-3185.02248
    [10] 吴靳, 戴明强, 王俊杰, 等. 基于学徒制算法的航母舰载机保障作业调度[J]. 中国舰船研究, 2022, 17(4): 145–154. doi: 10.19693/j.issn.1673-3185.02198

    WU J, DAI M Q, WANG J J, et al. Carrier-based aircraft operation support scheduling based on apprenticeship learning agorithm[J]. Chinese Journal of Ship Research, 2022, 17(4): 145–154 (in Chinese). doi: 10.19693/j.issn.1673-3185.02198
    [11] SPRECHER A, KOLISCH R, DREXL A. Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem[J]. European Journal of Operational Research, 1995, 80(1): 94–102. doi: 10.1016/0377-2217(93)E0294-8
    [12] SALLAM K M, CHAKRABORTTY R K, RYAN M J. A reinforcement learning based multi-method approach for stochastic resource constrained project scheduling problems[J]. Expert Systems With Applications, 2021, 169: 114479. doi: 10.1016/j.eswa.2020.114479
    [13] Yang, X. S. Nature-Inspired Metaheuristic Algorithms[M]. Frome: Luniver Press, 2008.
    [14] 杨航. 基于混合GA的模糊资源约束项目调度优化[D]. 大连: 大连理工大学, 2021.

    YANG H. Fuzzy resource constrained project scheduling optimization based on a hybrid GA[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
    [15] 刘蕾. 资源受限工期不确定下项目多目标鲁棒调度研究[D]. 北京: 华北电力大学(北京), 2019.

    LIU L. Research on multi-object robust resource-constrained scheduling of project with uncertainty duration[D]. Beijing: North China Electric Power University (Beijing), 2019 (in Chinese).
    [16] 张涛, 刘云生, 姚玉南, 等. 关键链技术在舰船等级修理周期管控中的应用研究[J]. 中国舰船研究, 2022, 17(2): 119–124. doi: 10.19693/j.issn.1673-3185.02293

    ZHANG T, LIU Y S, YAO Y N, et al. Application of critical chain project scheduling in the management and control of warships maintenance cycle[J]. Chinese Journal of Ship Research, 2022, 17(2): 119–124 (in Chinese). doi: 10.19693/j.issn.1673-3185.02293
    [17] CHAND S, SINGH H, RAY T. Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions[J]. Swarm and Evolutionary Computation, 2019, 44: 897–912. doi: 10.1016/j.swevo.2018.09.007
    [18] 刘国山, 林新宇. 柔性工期下的资源受限项目调度双目标优化研究[J]. 运筹与管理, 2022, 31(1): 1–7.

    LIU G S, LIN X Y. Bi-objective optimization for resource-constrained project scheduling problem with variable duration[J]. Operations Research and Management Science, 2022, 31(1): 1–7 (in Chinese).
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 修回日期:  2023-02-24
  • 网络出版日期:  2023-02-24

目录

    /

    返回文章
    返回