Quasi-static equivalent study on ice induced dynamic response of bow structure
-
摘要:
目的 随着极地探索技术的不断发展,针对冰区航线的船体结构设计不再局限于传统的经验公式方法,人们更加关注作用于结构上的实际冰载荷及结构响应,研究冰载荷作用下的结构响应计算成为极地船舶结构设计中的关键因素。 方法 首先通过有限元方法对某极地航行船舶遭遇的碎冰、浮冰、层冰等冰载荷工况进行数值仿真,考虑材料应变率影响,计算冰载荷作用下的结构动态响应;其次以结构响应等效为基准,进行动态响应的静态转换,并提出动静转化系数的概念;最后给出不同冰载荷工况下动静转化系数的取值范围。 结果 结果表明,船首结构在不同工况下动载荷响应的静载荷等效转换计算的转换系数为1.0~1.4之间。 结论 船首结构冰致动力响应的准静态等效方法是合理可行的。 Abstract:Objectives As polar exploration develops, hull structure designs for ice routes are no longer limited to the traditional empirical formula method as more attention is paid to the actual ice load and structural response acting on the structure. The study of structural response calculation under ice load is crucial for the structural design of polar ships. Methods First, the finite element method is used to numerically simulate the ice load cases of a polar navigation ship, such as crushed ice, floating ice and layered ice. Considering the influence of the material strain rate, the dynamic response of the structure under ice load is calculated. Second, based on the structural response equivalence, the static transformation of the dynamic response is completed, and the concept of the dynamic static transformation coefficient is proposed. Finally, the range of the dynamic static conversion coefficient under different ice load cases is obtained. Results The results show that the conversion coefficient of the dynamic-static equivalent conversion of the bow structure under different ice load cases is between 1.0 and 1.4. Conclusions The quasi-static equivalent method of the ice-induced dynamic response of a bow structure is verified as reasonable and feasible. -
Key words:
- ice load /
- strain rate /
- structural response /
- dynamic static conversion coefficient
-
表 1 冰载荷峰值参数表
Table 1. Ice load peak value parameter table
碎冰工况 浮冰工况 层冰工况 区域 $ {y_{\max }} $/MPa $ {x_{\max }} $/s S/s $ {y_{\max }} $/MPa $ {x_{\max }} $/s S/s $ {y_{\max }} $/MPa $ {x_{\max }} $/s S/s 1 1.00E−4 1.87 0.13 1.00E−4 3.22 0.29 1.00E−4 2.17 0.38 2 1.00E−4 2.12 0.23 1.00E−4 2.23 0.31 9.10E−3 2.39 0.11 3 1.00E−4 0.71 0.38 1.00E−4 1.87 0.25 1.00E−4 2.56 0.21 4 1.00E−4 1.89 0.41 1.20E+0 3.21 0.38 2.00E+0 3.39 0.23 5 1.20E−1 1.25 0.31 3.20E−1 1.14 0.40 1.20E+0 2.39 0.18 6 1.30E−1 1.17 0.15 4.50E−1 1.12 0.28 5.10E−1 2.83 0.21 7 8.00E−2 1.10 0.32 4.00E−2 2.59 0.80 3.80E−1 1.87 0.22 8 1.40E−1 1.08 0.25 6.00E−2 2.61 0.52 5.10E−1 1.85 0.35 9 7.00E−2 1.97 0.17 7.90E−1 2.65 0.46 5.70E−1 0.76 0.32 表 2 材料参数
Table 2. Material parameters
类型 名称 数据 弹性参数/MPa 杨氏模量 2.1E+5 泊松比 0.3 塑性参数/MPa 屈服强度 390 极限强度 510~660 材料密/(t·mm−3) $ \rho $ 7.8E−9 应变率参数/(s−1) D 40.4 q 5 表 3 动载荷最大响应汇总
Table 3. Dynamic load maximum response summary
类型 $ {\sigma _{dynamic}} $/MPa 区域 应变率/s−1 最大响应的时刻/t 碎冰 49.85 6 0.0005 1.08 浮冰 277.38 4 0.0026 3.28 层冰 450.87 4 0.0043 3.16 表 4 瞬时冰载荷加载
Table 4. Instantaneous ice load loading
类型 区域 载荷/MPa 碎冰 5 0.071 6 0.017 7 0.065 8 0.142 浮冰 4 1.184 层冰 4 2.000 表 5 静力响应结果汇总
Table 5. Summary of static response results
类型 $ {\sigma _{static - p}} $/MPa $ {\sigma _{static - t}} $/MPa 区域 碎冰 42.2 20.3 6 浮冰 210 206 4 层冰 350 346 4 表 6 动静转换系数
Table 6. Dynamic and static conversion coefficient
类型 $ {\sigma _{static - p}} $/MPa $ {\sigma _{static - t}} $/MPa $ {\sigma _{dynamic}} $/MPa $ {f_1} $ $ {f_1}^\prime $ 碎冰 42.2 20.3 49.85 1.18 2.45 浮冰 210 206 277.38 1.32 1.35 层冰 350 346 450.87 1.29 1.30 表 7 动静转化结果汇总表
Table 7. Summary of dynamic and static transformation results
类型 应变率/s−1 $ [{\sigma _{dynamic}}] $/MPa $ {f_1} $ $ {f_2} $ $ {f_3} $ 碎冰 0.0005 430.70 1.18 1.07 1.10 浮冰 0.0026 446.59 1.32 1.15 1.15 层冰 0.0043 452.58 1.29 1.12 1.16 -
[1] 郑远昊, 罗广恩, 王陈阳, 等. 极地船舶冰带区域关键节点研究[J]. 船舶工程, 2021, 43(7): 1–6,12. doi: 10.13788/j.cnki.cbgc.2021.07.01ZHENG Y H, LUO G E, WANG C Y, et al. Research on the typical joints in the ice belt region of polar ships[J]. Ship Engineering, 2021, 43(7): 1–6,12 (in Chinese). doi: 10.13788/j.cnki.cbgc.2021.07.01 [2] LEIRA B J, 柴威, RADHAKRISNAN G. 极地船舶结构设计思考[J]. 中国舰船研究, 2022, 17(5): 212–219. doi: 10.19693/j.issn.1673-3185.02979LEIRA B J, CHAI W, RADHAKRISNAN G. Structural design considerations for ships operating in arctic regions[J]. Chinese Journal of Ship Research, 2022, 17(5): 212–219 (in Chinese). doi: 10.19693/j.issn.1673-3185.02979 [3] 王志鹏, 郝寨柳, 赵桥生, 等. 基于数值计算的极地船舶冰阻力预报研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 728–732.WANG Z P, HAO Z L, ZHAO Q S, et al. Research on ice resistance prediction of a polar vessel based on numerical simulation[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 728–732 (in Chinese). [4] 王福花, 朱文博, 曲雪, 等. 冰载荷实船测试研究进展[J]. 船舶, 2022, 33(1): 19–38.WANG F H, ZHU W B, QU X, et al. Research development of full scale measurement of ice loads[J]. Ship & Boat, 2022, 33(1): 19–38 (in Chinese). [5] SHAMAEI F, BERGSTRÖM M, LI F, et al. Local pressures for ships in ice: probabilistic analysis of full-scale line-load data[J]. Marine Structures, 2020, 74: 102822. doi: 10.1016/j.marstruc.2020.102822 [6] ZHU L, SHI S Y, YU T X. A new ice load-response model for structural design of ice classed ships[C]//Proceedings of the 25th International Ocean and Polar Engineering Conference. 2015: 1792-1797. [7] INCE S T, KUMAR A, PARK D K, et al. An advanced technology for structural crashworthiness analysis of a ship colliding with an ice-ridge: numerical modelling and experiments[J]. International Journal of Impact Engineering, 2017, 110: 112–122. doi: 10.1016/j.ijimpeng.2017.02.014 [8] LI F, KÕRGESAAR M, KUJALA P, et al. Finite element based meta-modeling of ship-ice interaction at shoulder and midship areas for ship performance simulation[J]. Marine Structures, 2020, 71: 102736. doi: 10.1016/j.marstruc.2020.102736 [9] 韩建康. 外飘型船艏砰击强度评估与优化研究[D]. 镇江: 江苏科技大学, 2017.HAN J K. Assessment and optimization research on strength of flare ship bow slamming[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017 (in Chinese). [10] 郭春雨, 谢畅, 王帅, 等. 碎冰条件下冰区船阻力性能试验研究[J]. 哈尔滨工程大学学报, 2016, 37(4): 481–486.GUO C Y, XIE C, WANG S, et al. Resistance of ships in pack ice conditions[J]. Journal of Harbin Engineering University, 2016, 37(4): 481–486 (in Chinese). [11] 杨磊. 船舶结构碰撞失效准则研究[D]. 上海: 上海交通大学, 2020.YANG L. Study on collision failure criteria of ship structure[D]. Shanghai: Shanghai Jiaotong University, 2020 (in Chinese). [12] CHEN Z J, YUAN J H, ZHAO Y. Impact experiment study of ship building steel at 450MPa level and constitutive model of Cowper-Symonds[J]. Journal of Ship Mechanics, 2007, 11(6): 933–941. -