Method of recognizing ice circumferential crack size based on YOLACT
-
摘要:
目的 在使用环向裂纹法计算冰载荷时,裂纹的尺寸都是采用经验公式的方法进行估算,在选择经验参数时往往存在很多不确定性,为此提出一种基于YOLACT的环向裂纹参数计算方法,以准确获取海冰裂纹尺寸。 方法 通过YOLACT网络识别随船拍摄图像中的冰块,然后对检测到的掩膜进行边缘检测,得到冰块裂纹形状,对裂纹进行圆弧拟合获取半径和张角。 结果 计算结果表明,半径的识别准确率达96.12%,张角的识别准确率达96.58%。 结论 该方法可在基于环向裂纹法计算冰载荷时,为环向裂纹法提供裂纹尺寸的精确输入,有助于极地船舶和寒冷地区海洋结构物的初始设计。 Abstract:Objectives When using the circumference crack method to calculate the ice load, the size of the circumference crack is usually determined by an empirical formula, but this can introduce many uncertainties to the selection of input parameters. Methods To accurately determine the size of circumference cracks, we propose a method of recognizing ice circumference crack size based on YOLACT, which can identify ice in images taken with ships. We then detect the edge of the mask and obtain the shape of the ice cracks, and the ice breaking radius and angle can be estimated by fitting the cracks. Results The results show that the accuracy of the ice breaking radius and open angle estimated by the proposed method can reach up to 96.12% and 96.58% respectively. Conclusions This method can accurately determine the size of circumference cracks and assist in the initial design of marine structures in cold regions. -
Key words:
- circumference crack size /
- instance segmentation /
- sea ice image processing /
- arc fitting
-
表 1 试验冰环向裂纹参数计算
Table 1. Calculation of circumferential crack parameters of test ice
冰块编号 破冰半径/(pixel) 破冰角/(°) 1 333 75 2 135 44 3 145 88 4 121 58 5 39 84 6 131 68 7 338 65 8 73 47 表 2 环向裂纹参数计算准确率
Table 2. Accuracy of calculated circumferential crack parameters
冰块编号 拟合半径/(pixel) 拟合破冰角/(°) 霍夫圆检测半径/(pixel) 霍夫圆检测角度/(°) 半径准确率/% 破冰角准确率/% 1 333 75 338 73 98.52 97.26 2 135 44 147 42 91.84 95.24 3 145 88 146 89 99.32 98.88 4 121 58 131 55 92.37 94.55 5 187 87 192 86 97.40 98.85 6 179 45 187 42 98.72 93.33 7 131 68 132 69 99.24 98.55 8 338 65 341 64 99.12 98.44 9 73 47 79 44 92.41 93.18 10 425 58 426 57 99.77 98.28 -
[1] WANG M F, SU J, LANDY J, et al. A new algorithm for sea ice melt pond fraction estimation from high‐resolution optical satellite imagery[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2019JC015716. doi: 10.1029/2019JC015716 [2] 倪宝玉, 徐莹, 黄其, 等. 修正内聚区长度计算公式在冰I型裂纹扩展中的应用[J]. 中国舰船研究, 2022, 17(3): 58–66. doi: 10.19693/j.issn.1673-3185.02701NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66 (in Chinese). doi: 10.19693/j.issn.1673-3185.02701 [3] 丁仕风, 蔡金延, 周利, 等. 冰水池结冰过程的数值模拟分析[J]. 中国舰船研究, 2021, 16(5): 137–142. doi: 10.19693/j.issn.1673-3185.02113DING S F, CAI J Y, ZHOU L, et al. Numerical simulation analysis of icing process in ice model tank[J]. Chinese Journal of Ship Research, 2021, 16(5): 137–142 (in Chinese). doi: 10.19693/j.issn.1673-3185.02113 [4] BOURGAULT D. Shore-based photogrammetry of river ice[J]. Canadian Journal of Civil Engineering, 2008, 35(1): 80–86. doi: 10.1139/L07-087 [5] 卢鹏, 李志军, 哈斯·克里斯蒂安. 从船侧倾斜拍摄图像中提取海冰密集度的方法[J]. 大连海事大学学报, 2009, 35(2): 15–18. doi: 10.16411/j.cnki.issn1006-7736.2009.02.029LU P, LI Z J, HASS C. A method to obtain sea ice concentration from oblique images on shipboard[J]. Journal of Dalian Maritime University, 2009, 35(2): 15–18 (in Chinese). doi: 10.16411/j.cnki.issn1006-7736.2009.02.029 [6] 王明锋, 苏洁, 李涛, 等. 基于无人机观测的北极冰面融池及冰面粗糙度信息提取方法研究[J]. 极地研究, 2017, 29(4): 436–445. doi: 10.13679/j.jdyj.2017.4.436WANG M F, SU J, LI T, et al. Study on the method of extracting Arctic melt pond and roughness information on sea ice surface based on UAV observation[J]. Chinese Journal of Polar Research, 2017, 29(4): 436–445 (in Chinese). doi: 10.13679/j.jdyj.2017.4.436 [7] WU X, XU L. Ice flood velocity calculating approach based on single view metrology[C]//IOP Conference Series: Earth and Environmental Science. Beijing: IOP, 2017: 012006. [8] ZHANG Q, VAN DER WERFF S, METRIKIN I, et al. Image processing for the analysis of an evolving broken-ice field in model testing[C]//International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: American Society of Mechanical Engineers, 2012: 597-605. [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [10] BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT++ better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108–1121. doi: 10.1109/TPAMI.2020.3014297 [11] ZHOU L, CHUANG Z J, BAI X. Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 119–128. doi: 10.1016/j.ijnaoe.2017.06.001 [12] WANG S Q. A dynamic model for breaking pattern of level ice by conical structures[J]. Acta Polytechnica Scandinavica:Mechanical Engineering Series, 2001(156): 2+6–94. [13] SU B, RISKA K, MOAN T. Numerical simulation of local ice loads in uniform and randomly varying ice conditions[J]. Cold Regions Science and Technology, 2011, 65(2): 145–159. doi: 10.1016/j.coldregions.2010.10.004 [14] ZHANG C Q, CHEN X D, JI S Y. Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102885. doi: 10.1016/j.jag.2022.102885 [15] SUZUKI S, BE K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32–46. doi: 10.1016/0734-189X(85)90016-7 -