留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于YOLACT的冰体环向裂纹尺寸识别方法

周利 蔡金延 丁仕风 刘仁伟 曾鼎翰

周利, 蔡金延, 丁仕风, 等. 基于YOLACT的冰体环向裂纹尺寸识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03024
引用本文: 周利, 蔡金延, 丁仕风, 等. 基于YOLACT的冰体环向裂纹尺寸识别方法[J]. 中国舰船研究. DOI: 10.19693/j.issn.1673-3185.03024
ZHOU L, CAI J Y, DING S F, et al. Method of recognizing ice circumferential crack size based on YOLACT[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03024
Citation: ZHOU L, CAI J Y, DING S F, et al. Method of recognizing ice circumferential crack size based on YOLACT[J]. Chinese Journal of Ship Research. DOI: 10.19693/j.issn.1673-3185.03024

基于YOLACT的冰体环向裂纹尺寸识别方法

doi: 10.19693/j.issn.1673-3185.03024
基金项目: 国家重点研发计划资助项目(2022YFE010700);国家自然科学基金面上资助项目(52171259)
详细信息
    作者简介:

    周利,男,1983 年生,博士,教授。研究方向:极地船舶与海洋工程。E-mail:zhouli209@hotmail.com

    蔡金延,男,1998年生,硕士。研究方向:计算机视觉,海冰图像处理。E-mail:209010066@stu.just.edn.cn

    丁仕风,男,1981 年生,博士,正高级工程师。研究方向:极地船舶与海洋工程。E-mail:15001945469@163.com

    通信作者:

    丁仕风

  • 中图分类号: U666.157

Method of recognizing ice circumferential crack size based on YOLACT

知识共享许可协议
基于YOLACT的冰体环向裂纹尺寸识别方法周利,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  在使用环向裂纹法计算冰载荷时,裂纹的尺寸都是采用经验公式的方法进行估算,在选择经验参数时往往存在很多不确定性,为此提出一种基于YOLACT的环向裂纹参数计算方法,以准确获取海冰裂纹尺寸。  方法  通过YOLACT网络识别随船拍摄图像中的冰块,然后对检测到的掩膜进行边缘检测,得到冰块裂纹形状,对裂纹进行圆弧拟合获取半径和张角。  结果  计算结果表明,半径的识别准确率达96.12%,张角的识别准确率达96.58%。  结论  该方法可在基于环向裂纹法计算冰载荷时,为环向裂纹法提供裂纹尺寸的精确输入,有助于极地船舶和寒冷地区海洋结构物的初始设计。
  • 图  YOLACT框架图

    Figure  1.  Network of YOLACT

    图  YOLACT检测结果

    Figure  2.  Test of YOLACT

    图  ROI二值化

    Figure  3.  Binarization of ROI

    图  原图边缘提取结果

    Figure  4.  Result of edge extraction in original image

    图  海冰边缘提取结果

    Figure  5.  Extraction result of sea ice edge

    图  圆弧端点示意图

    Figure  6.  Schematic diagram of arc endpoint

    图  中间点选取示意图

    Figure  7.  Schematic diagram of middle point selection

    图  环向裂纹参数计算流程

    Figure  8.  Calculation process of circumferential crack parameters

    图  弧线拟合结果

    Figure  9.  Result of arc fitting

    图  10  破冰半径计算结果

    Figure  10.  Calculation of ice breaking radius

    图  11  本文改进算法和霍夫圆检测算法拟合结果比较

    Figure  11.  Comparison of fitting results between Hough circle detection and the improved algorithm

    表  试验冰环向裂纹参数计算

    Table  1.  Calculation of circumferential crack parameters of test ice

    冰块编号破冰半径/(pixel)破冰角/(°)
    133375
    213544
    314588
    412158
    53984
    613168
    733865
    87347
    下载: 导出CSV

    表  环向裂纹参数计算准确率

    Table  2.  Accuracy of calculated circumferential crack parameters

    冰块编号拟合半径/(pixel)拟合破冰角/(°)霍夫圆检测半径/(pixel)霍夫圆检测角度/(°)半径准确率/%破冰角准确率/%
    1333753387398.5297.26
    2135441474291.8495.24
    3145881468999.3298.88
    4121581315592.3794.55
    5187871928697.4098.85
    6179451874298.7293.33
    7131681326999.2498.55
    8338653416499.1298.44
    97347794492.4193.18
    10425584265799.7798.28
    下载: 导出CSV
  • [1] WANG M F, SU J, LANDY J, et al. A new algorithm for sea ice melt pond fraction estimation from high‐resolution optical satellite imagery[J]. Journal of Geophysical Research: Oceans, 2020, 125(10): e2019JC015716. doi: 10.1029/2019JC015716
    [2] 倪宝玉, 徐莹, 黄其, 等. 修正内聚区长度计算公式在冰I型裂纹扩展中的应用[J]. 中国舰船研究, 2022, 17(3): 58–66. doi: 10.19693/j.issn.1673-3185.02701

    NI B Y, XU Y, HUANG Q, et al. Application of improved cohesive zone length formula in ice mode I crack propagation[J]. Chinese Journal of Ship Research, 2022, 17(3): 58–66 (in Chinese). doi: 10.19693/j.issn.1673-3185.02701
    [3] 丁仕风, 蔡金延, 周利, 等. 冰水池结冰过程的数值模拟分析[J]. 中国舰船研究, 2021, 16(5): 137–142. doi: 10.19693/j.issn.1673-3185.02113

    DING S F, CAI J Y, ZHOU L, et al. Numerical simulation analysis of icing process in ice model tank[J]. Chinese Journal of Ship Research, 2021, 16(5): 137–142 (in Chinese). doi: 10.19693/j.issn.1673-3185.02113
    [4] BOURGAULT D. Shore-based photogrammetry of river ice[J]. Canadian Journal of Civil Engineering, 2008, 35(1): 80–86. doi: 10.1139/L07-087
    [5] 卢鹏, 李志军, 哈斯·克里斯蒂安. 从船侧倾斜拍摄图像中提取海冰密集度的方法[J]. 大连海事大学学报, 2009, 35(2): 15–18. doi: 10.16411/j.cnki.issn1006-7736.2009.02.029

    LU P, LI Z J, HASS C. A method to obtain sea ice concentration from oblique images on shipboard[J]. Journal of Dalian Maritime University, 2009, 35(2): 15–18 (in Chinese). doi: 10.16411/j.cnki.issn1006-7736.2009.02.029
    [6] 王明锋, 苏洁, 李涛, 等. 基于无人机观测的北极冰面融池及冰面粗糙度信息提取方法研究[J]. 极地研究, 2017, 29(4): 436–445. doi: 10.13679/j.jdyj.2017.4.436

    WANG M F, SU J, LI T, et al. Study on the method of extracting Arctic melt pond and roughness information on sea ice surface based on UAV observation[J]. Chinese Journal of Polar Research, 2017, 29(4): 436–445 (in Chinese). doi: 10.13679/j.jdyj.2017.4.436
    [7] WU X, XU L. Ice flood velocity calculating approach based on single view metrology[C]//IOP Conference Series: Earth and Environmental Science. Beijing: IOP, 2017: 012006.
    [8] ZHANG Q, VAN DER WERFF S, METRIKIN I, et al. Image processing for the analysis of an evolving broken-ice field in model testing[C]//International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: American Society of Mechanical Engineers, 2012: 597-605.
    [9] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
    [10] BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT++ better real-time instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1108–1121. doi: 10.1109/TPAMI.2020.3014297
    [11] ZHOU L, CHUANG Z J, BAI X. Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 119–128. doi: 10.1016/j.ijnaoe.2017.06.001
    [12] WANG S Q. A dynamic model for breaking pattern of level ice by conical structures[J]. Acta Polytechnica Scandinavica:Mechanical Engineering Series, 2001(156): 2+6–94.
    [13] SU B, RISKA K, MOAN T. Numerical simulation of local ice loads in uniform and randomly varying ice conditions[J]. Cold Regions Science and Technology, 2011, 65(2): 145–159. doi: 10.1016/j.coldregions.2010.10.004
    [14] ZHANG C Q, CHEN X D, JI S Y. Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102885. doi: 10.1016/j.jag.2022.102885
    [15] SUZUKI S, BE K. Topological structural analysis of digitized binary images by border following[J]. Computer Vision, Graphics, and Image Processing, 1985, 30(1): 32–46. doi: 10.1016/0734-189X(85)90016-7
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  17
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-31
  • 修回日期:  2022-09-06
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回