留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型舱室在战斗部内爆下的载荷及毁伤特性试验研究

黄涛 陈威 彭帅 施锐 柴威 李晓彬

黄涛, 陈威, 彭帅, 等. 典型舱室在战斗部内爆下的载荷及毁伤特性试验研究[J]. 中国舰船研究, 2023, 18(6): 1–10 doi: 10.19693/j.issn.1673-3185.03000
引用本文: 黄涛, 陈威, 彭帅, 等. 典型舱室在战斗部内爆下的载荷及毁伤特性试验研究[J]. 中国舰船研究, 2023, 18(6): 1–10 doi: 10.19693/j.issn.1673-3185.03000
HUANG T, CHEN W, PENG S, et al. Experimental study on load and damage characteristics of typical cabin under warhead internal blast[J]. Chinese Journal of Ship Research, 2023, 18(6): 1–10 doi: 10.19693/j.issn.1673-3185.03000
Citation: HUANG T, CHEN W, PENG S, et al. Experimental study on load and damage characteristics of typical cabin under warhead internal blast[J]. Chinese Journal of Ship Research, 2023, 18(6): 1–10 doi: 10.19693/j.issn.1673-3185.03000

典型舱室在战斗部内爆下的载荷及毁伤特性试验研究

doi: 10.19693/j.issn.1673-3185.03000
基金项目: 国家自然科学基金资助项目(51979213)
详细信息
    作者简介:

    黄涛,男,1996年生,硕士生。 研究方向:舰船抗爆防护设计。E-mail:ht811798@163.com

    李晓彬,男,1971年生,博士,教授。研究方向:舰船结构抗爆抗冲击,舰船结构综合防护。E-mail:lxbmark@163.com

    通信作者:

    李晓彬

  • 中图分类号: U661.43

Experimental study on load and damage characteristics of typical cabin under warhead internal blast

知识共享许可协议
典型舱室在战斗部内爆下的载荷及毁伤特性试验研究黄涛,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  探讨有/无防护舱壁结构对典型舱室在战斗部内爆下载荷及毁伤特性的影响,指导舰船重要舱室的防护设计。  方法  设计典型的双舱结构模型,以大舱室模拟爆炸当舱,小舱室模拟重要舱室,开展常规钢制舱壁与多层含液防护舱壁这2种舱室结构在6.12 kg TNT带壳装药内爆作用下的载荷及毁伤对比试验,分析破片及冲击波载荷特性,以及结构破口及变形毁伤特征。  结果  结果显示,柱锥形战斗部前端产生的破片的飞散角基本一致,且前端的破片数量少于环向破片数量;爆炸冲击波有明显的角隅汇聚特点,冲击波能量会随结构的强弱发生流向改变,整体能量更易向结构较薄弱处倾泻;在冲击波和破片的联合毁伤下,常规钢制横舱壁中心会产生大破口,而多层含液防护舱壁则仅迎弹面有较大的塑性变形及少量破片穿孔,背弹面结构完整;多层含液防护舱壁能有效阻止爆炸能量传递至邻舱,但会加剧爆炸当舱的结构毁伤。  结论  “疏堵”(舱壁加强或减弱)防护设计方法在舰船重要舱室防护中具有重要的实用价值。
  • 图  舱室三维模型

    Figure  1.  The three-dimensional model of the cabin

    图  舱室三视图

    Figure  2.  Three view of cabin

    图  多层防护结构模型

    Figure  3.  Model of multi-layer protective structure

    图  多层防护结构加装工艺

    Figure  4.  Installation process of multi-layer protective structure

    图  战斗部模型

    Figure  5.  Model of warhead

    图  测点布置示意图

    Figure  6.  Schematic diagram of measurement points arrangement

    图  战斗部舱内爆炸过程

    Figure  7.  Process of warhead internal blast

    图  部分破片穿孔情况

    Figure  8.  Partial fragment damage

    图  破片群飞散及与舱室结构交会示意图

    Figure  9.  Fragments scattering and impacting on cabin structure

    图  10  2种工况下的速度靶网数据曲线

    Figure  10.  Signal of velocity targets under two working conditions

    图  11  两次工况下各测点的冲击波压力时历曲线

    Figure  11.  Time history curves of shock wave pressure of each measurement point under two working conditions

    图  12  舱室外部毁伤情况

    Figure  12.  External damage of cabin

    图  13  爆炸当舱内部毁伤情况

    Figure  13.  Internal damage of explosion cabin

    图  14  2种工况试验后的横舱壁毁伤情况

    Figure  14.  Damage of transverse bulkhead after test under two working conditions

    表  模型金属材料主要力学性能

    Table  1.  Main mechanical properties of model metallic materials

    参数E36钢6061铝合金40Cr
    密度ρ/(kg∙m−3)7 8502 7507 820
    屈服强度σ0 /MPa355224316
    抗拉强度σs /MPa490~630250972
    伸长率δs /%211211.4
    弹性模量Es /GPa21064.2210
    下载: 导出CSV

    表  模型非金属材料(SiC陶瓷)主要力学性能

    Table  2.  Main mechanical properties of model nonmetallic materials (SiC ceramics)

    参数数值
    密度/(kg∙m−3)3130
    洛氏硬度HRA93
    弯曲强度/MPa400
    断裂韧性/(MPa∙m1/2)4.0
    SiC含量/%≥98
    弹性模量/GPa415
    下载: 导出CSV

    表  穿透舱壁破片数量试验结果统计

    Table  3.  Experimental results of number of fragments penetrating bulkhead

    舱壁破片数量
    工况1工况2
    后舱壁97
    横舱壁80
    左舱壁4855
    右舱壁6762
    顶舱壁6884
    底舱壁4861
    总计244269
    下载: 导出CSV

    表  爆炸当舱围壁最大挠度变形量试验结果统计

    Table  4.  Statistics of maximum deflection deformation of explosion cabin bulkhead

    舱壁最大挠度变形/m
    工况1工况2
    左舱壁0.1620.144
    右舱壁0.1700.139
    顶舱壁0.4261.310
    底舱壁0.1070.095
    下载: 导出CSV
  • [1] BAKER W E. Explosions in air[M]. Austin: University of Texas Press, 1973: 150-167.
    [2] ZYSKOWSKI A, SOCHET I, MAVROT G, et al. Study of the explosion process in a small scale experiment—structural loading[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(4): 291–299. doi: 10.1016/j.jlp.2004.05.003
    [3] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Some characteristics of an interior explosion within a room without venting[J]. Structural Engineering and Mechanics, 2011, 38(5): 633–649. doi: 10.12989/sem.2011.38.5.633
    [4] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究[J]. 船舶力学, 2010, 14(8): 901–907.

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8): 901–907 (in Chinese).
    [5] MOTT N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308.
    [6] 孔祥韶, 吴卫国, 杜志鹏, 等. 圆柱形战斗部爆炸破片特性研究[J]. 工程力学, 2014, 31(1): 243–249.

    KONG X S, WU W G, DU Z P, et al. Research on fragments characteristic of cylindrical warhead[J]. Engineering Mechanics, 2014, 31(1): 243–249 (in Chinese).
    [7] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study[J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. doi: 10.1016/0734-743X(95)00018-2
    [8] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J]. International Journal of Impact Engineering, 2015, 79: 32–44. doi: 10.1016/j.ijimpeng.2014.08.002
    [9] 姚术健, 张舵, 卢芳云, 等. 多箱室结构内部爆炸损伤特性研究[J]. 兵工学报, 2015, 36(增刊1): 87-91.

    YAO S J, ZHANG D, LU F Y, et al. Research on the damage characteristics of multi-chamber structure subjected to internal blast[J]. Acta Armamentarii, 2015, 36(Supp 1): 87-91 (in Chinese).
    [10] 李营, 张磊, 杜志鹏, 等. 舱室结构在战斗部舱内爆炸作用下毁伤特性的实验研究[J]. 船舶力学, 2018, 22(8): 993–1000.

    LI Y, ZHANG L, DU Z P, et al. Experiment investigation on damage characteristic of cabins under warhead internal blast[J]. Journal of Ship Mechanics, 2018, 22(8): 993–1000 (in Chinese).
    [11] 谢悦, 侯海量, 李典. 爆炸载荷下舱内泡沫铝夹芯结构的动响应特性[J]. 高压物理学报, 2022, 36(2): 024103-1–024103-15.

    XIE Y, HOU H L, LI D. Dynamic response characteristics of aluminum foam sandwich structure under explosion load in cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103-1–024103-15 (in Chinese).
    [12] 朱锡, 苗宇, 梅志远. 中小型舰艇设置轻型复合装甲的作用及爆炸破片的杀伤威力计算[J]. 海军工程大学学报, 2001, 13(4): 32–36.

    ZHU X, MIAO Y, MEI Z Y. The role of light composite armor in warships and the calculation of the killing power by explosive fragment[J]. Journal of Naval University of Engineering, 2001, 13(4): 32–36 (in Chinese).
    [13] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835

    YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63 (in Chinese). doi: 10.19693/j.issn.1673-3185.02835
    [14] 罗放, 杨德庆. 连续爆炸冲击下负泊松比超材料防护结构性能研究[J]. 振动与冲击, 2022, 41(2): 74–78, 112.

    LUO F, YANG D Q. Protection performance analysis of auxetic structures under continuous explosive impact[J]. Journal of Vibration and Shock, 2022, 41(2): 74–78, 112 (in Chinese).
    [15] 任宪奔, 江鹏, 李营, 等. 舰船结构舱内爆炸毁伤与防护研究进展[J]. 中国科学:物理学 力学 天文学, 2021, 51(12): 124602.

    REN X B, JIANG P, LI Y, et al. Review of the damage and protection of warship structures under internal blast loading[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(12): 124602 (in Chinese).
    [16] 侯海量, 张成亮, 朱锡. 水下舷侧防雷舱结构防护效能评估方法研究[J]. 中国舰船研究, 2013, 8(3): 22–26. doi: 10.3969/j.issn.1673-3185.2013.03.005

    HOU H L, ZHANG C L, ZHU X. Evaluation methods of the performance of multi-layered blast protection blisters subjected to underwater contact explosions[J]. Chinese Journal of Ship Research, 2013, 8(3): 22–26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.03.005
    [17] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究[D]. 合肥: 中国科学技术大学, 2007.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering[D]. Hefei: University of Science and Technology of China, 2007 (in Chinese).
    [18] 胡方靓. 蜂窝状防护液舱结构抗高速破片侵彻研究[D]. 武汉: 武汉理工大学, 2020.

    HU F L. Penetration resistance of honeycomb protective liquid cabin to high-speed fragment[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese).
    [19] 李茂, 高圣智, 侯海量, 等. 空爆冲击波与破片群联合作用下聚脲涂覆陶瓷复合装甲结构毁伤特性[J]. 爆炸与冲击, 2020, 40(11): 111403.

    LI M, GAO S Z, HOU H L, et al. Damage characteristics of polyurea coated ceramic/steel composite armor structures subjected to combined loadings of blast and high-velocity fragments[J]. Explosion and Shock Waves, 2020, 40(11): 111403 (in Chinese).
    [20] 王晓强, 胡方靓, 徐双喜. 蜂窝夹芯板的抗高速冲击性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 709–714.

    WANG X Q, HU F L, XU S X. Study on high-velocity impact resistance of honeycomb sandwich panels[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 709–714 (in Chinese).
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 修回日期:  2022-11-17
  • 网络出版日期:  2023-06-19

目录

    /

    返回文章
    返回