Experimental study on load and damage characteristics of typical cabin under warhead internal blast
-
摘要:
目的 探讨有/无防护舱壁结构对典型舱室在战斗部内爆下载荷及毁伤特性的影响,指导舰船重要舱室的防护设计。 方法 设计典型的双舱结构模型,以大舱室模拟爆炸当舱,小舱室模拟重要舱室,开展常规钢制舱壁与多层含液防护舱壁这2种舱室结构在6.12 kg TNT带壳装药内爆作用下的载荷及毁伤对比试验,分析破片及冲击波载荷特性,以及结构破口及变形毁伤特征。 结果 结果显示,柱锥形战斗部前端产生的破片的飞散角基本一致,且前端的破片数量少于环向破片数量;爆炸冲击波有明显的角隅汇聚特点,冲击波能量会随结构的强弱发生流向改变,整体能量更易向结构较薄弱处倾泻;在冲击波和破片的联合毁伤下,常规钢制横舱壁中心会产生大破口,而多层含液防护舱壁则仅迎弹面有较大的塑性变形及少量破片穿孔,背弹面结构完整;多层含液防护舱壁能有效阻止爆炸能量传递至邻舱,但会加剧爆炸当舱的结构毁伤。 结论 “疏堵”(舱壁加强或减弱)防护设计方法在舰船重要舱室防护中具有重要的实用价值。 Abstract:Objective This study seeks to explore the effects of a protective bulkhead structure on the load and damage characteristics of a typical cabin under warhead internal blast, and guide protective bulkhead design for important ship cabins. Method A typical double cabin structure model is designed in which the large cabin is used to simulate the explosion cabin, while the small cabin is used to simulate the important cabin. A comparative study is then carried out on the load and damage characteristics of the original bulkhead model and multi-layer liquid-containing protective bulkhead model under an internal explosion of 6.12 kg TNT, and an analysis is made of the load characteristics of fragments, shockwaves, structural crevasses, deformation damage characteristics. Results The fragment flying angle produced by the front end of the warhead is basically the same, and there are fewer fragments at the front end than in the circumferential direction. The presence or absence of a protective bulkhead has little effect on the fragment load characteristics. The explosion shockwave has obvious corner convergence characteristics. The shockwave energy changes with the strength of the structure, and it is easier for the overall energy to pour into the weak parts of the structure. Under the combined damage of shockwave and fragments, the center of the conventional steel transverse bulkhead suffers a large break, while the multi-layer liquid-containing protective bulkhead only suffers large plastic deformation on the projectile-facing surface and perforation by a small number of fragments, with the structure of the projectile backing surface remaining complete. Multi-layer liquid-containing protective bulkheads can effectively prevent the transmission of explosive energy to the adjacent cabin, but they will aggravate the structural damage of the explosion cabin. Conclusion The "evacuating and blocking" protection design method has important practical application value for the protection of important ship cabins. -
Key words:
- internal blast /
- protective bulkhead /
- shockwave /
- fragments /
- structural damage
-
表 1 模型金属材料主要力学性能
Table 1. Main mechanical properties of model metallic materials
参数 E36钢 6061铝合金 40Cr 密度ρ/(kg∙m−3) 7 850 2 750 7 820 屈服强度σ0 /MPa 355 224 316 抗拉强度σs /MPa 490~630 250 972 伸长率δs /% 21 12 11.4 弹性模量Es /GPa 210 64.2 210 表 2 模型非金属材料(SiC陶瓷)主要力学性能
Table 2. Main mechanical properties of model nonmetallic materials (SiC ceramics)
参数 数值 密度/(kg∙m−3) 3130 洛氏硬度HRA 93 弯曲强度/MPa 400 断裂韧性/(MPa∙m1/2) 4.0 SiC含量/% ≥98 弹性模量/GPa 415 表 3 穿透舱壁破片数量试验结果统计
Table 3. Experimental results of number of fragments penetrating bulkhead
舱壁 破片数量 工况1 工况2 后舱壁 9 7 横舱壁 8 0 左舱壁 48 55 右舱壁 67 62 顶舱壁 68 84 底舱壁 48 61 总计 244 269 表 4 爆炸当舱围壁最大挠度变形量试验结果统计
Table 4. Statistics of maximum deflection deformation of explosion cabin bulkhead
舱壁 最大挠度变形/m 工况1 工况2 左舱壁 0.162 0.144 右舱壁 0.170 0.139 顶舱壁 0.426 1.310 底舱壁 0.107 0.095 -
[1] BAKER W E. Explosions in air[M]. Austin: University of Texas Press, 1973: 150-167. [2] ZYSKOWSKI A, SOCHET I, MAVROT G, et al. Study of the explosion process in a small scale experiment—structural loading[J]. Journal of Loss Prevention in the Process Industries, 2004, 17(4): 291–299. doi: 10.1016/j.jlp.2004.05.003 [3] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z. Some characteristics of an interior explosion within a room without venting[J]. Structural Engineering and Mechanics, 2011, 38(5): 633–649. doi: 10.12989/sem.2011.38.5.633 [4] 侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究[J]. 船舶力学, 2010, 14(8): 901–907.HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin[J]. Journal of Ship Mechanics, 2010, 14(8): 901–907 (in Chinese). [5] MOTT N F. Fragmentation of shell cases[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. [6] 孔祥韶, 吴卫国, 杜志鹏, 等. 圆柱形战斗部爆炸破片特性研究[J]. 工程力学, 2014, 31(1): 243–249.KONG X S, WU W G, DU Z P, et al. Research on fragments characteristic of cylindrical warhead[J]. Engineering Mechanics, 2014, 31(1): 243–249 (in Chinese). [7] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study[J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. doi: 10.1016/0734-743X(95)00018-2 [8] GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading[J]. International Journal of Impact Engineering, 2015, 79: 32–44. doi: 10.1016/j.ijimpeng.2014.08.002 [9] 姚术健, 张舵, 卢芳云, 等. 多箱室结构内部爆炸损伤特性研究[J]. 兵工学报, 2015, 36(增刊1): 87-91.YAO S J, ZHANG D, LU F Y, et al. Research on the damage characteristics of multi-chamber structure subjected to internal blast[J]. Acta Armamentarii, 2015, 36(Supp 1): 87-91 (in Chinese). [10] 李营, 张磊, 杜志鹏, 等. 舱室结构在战斗部舱内爆炸作用下毁伤特性的实验研究[J]. 船舶力学, 2018, 22(8): 993–1000.LI Y, ZHANG L, DU Z P, et al. Experiment investigation on damage characteristic of cabins under warhead internal blast[J]. Journal of Ship Mechanics, 2018, 22(8): 993–1000 (in Chinese). [11] 谢悦, 侯海量, 李典. 爆炸载荷下舱内泡沫铝夹芯结构的动响应特性[J]. 高压物理学报, 2022, 36(2): 024103-1–024103-15.XIE Y, HOU H L, LI D. Dynamic response characteristics of aluminum foam sandwich structure under explosion load in cabin[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024103-1–024103-15 (in Chinese). [12] 朱锡, 苗宇, 梅志远. 中小型舰艇设置轻型复合装甲的作用及爆炸破片的杀伤威力计算[J]. 海军工程大学学报, 2001, 13(4): 32–36.ZHU X, MIAO Y, MEI Z Y. The role of light composite armor in warships and the calculation of the killing power by explosive fragment[J]. Journal of Naval University of Engineering, 2001, 13(4): 32–36 (in Chinese). [13] 杨坤, 张玮, 李营, 等. 水下爆炸作用下复合材料圆柱壳结构失效模式分析[J]. 中国舰船研究, 2023, 18(2): 55–63. doi: 10.19693/j.issn.1673-3185.02835YANG K, ZHANG W, LI Y, et al. Failure mode analysis of composite cylindrical shell structure under underwater explosion[J]. Chinese Journal of Ship Research, 2023, 18(2): 55–63 (in Chinese). doi: 10.19693/j.issn.1673-3185.02835 [14] 罗放, 杨德庆. 连续爆炸冲击下负泊松比超材料防护结构性能研究[J]. 振动与冲击, 2022, 41(2): 74–78, 112.LUO F, YANG D Q. Protection performance analysis of auxetic structures under continuous explosive impact[J]. Journal of Vibration and Shock, 2022, 41(2): 74–78, 112 (in Chinese). [15] 任宪奔, 江鹏, 李营, 等. 舰船结构舱内爆炸毁伤与防护研究进展[J]. 中国科学:物理学 力学 天文学, 2021, 51(12): 124602.REN X B, JIANG P, LI Y, et al. Review of the damage and protection of warship structures under internal blast loading[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(12): 124602 (in Chinese). [16] 侯海量, 张成亮, 朱锡. 水下舷侧防雷舱结构防护效能评估方法研究[J]. 中国舰船研究, 2013, 8(3): 22–26. doi: 10.3969/j.issn.1673-3185.2013.03.005HOU H L, ZHANG C L, ZHU X. Evaluation methods of the performance of multi-layered blast protection blisters subjected to underwater contact explosions[J]. Chinese Journal of Ship Research, 2013, 8(3): 22–26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.03.005 [17] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究[D]. 合肥: 中国科学技术大学, 2007.ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering[D]. Hefei: University of Science and Technology of China, 2007 (in Chinese). [18] 胡方靓. 蜂窝状防护液舱结构抗高速破片侵彻研究[D]. 武汉: 武汉理工大学, 2020.HU F L. Penetration resistance of honeycomb protective liquid cabin to high-speed fragment[D]. Wuhan: Wuhan University of Technology, 2020 (in Chinese). [19] 李茂, 高圣智, 侯海量, 等. 空爆冲击波与破片群联合作用下聚脲涂覆陶瓷复合装甲结构毁伤特性[J]. 爆炸与冲击, 2020, 40(11): 111403.LI M, GAO S Z, HOU H L, et al. Damage characteristics of polyurea coated ceramic/steel composite armor structures subjected to combined loadings of blast and high-velocity fragments[J]. Explosion and Shock Waves, 2020, 40(11): 111403 (in Chinese). [20] 王晓强, 胡方靓, 徐双喜. 蜂窝夹芯板的抗高速冲击性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 709–714.WANG X Q, HU F L, XU S X. Study on high-velocity impact resistance of honeycomb sandwich panels[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 709–714 (in Chinese). -