Finite-time tracking control of underactuated marine vehicles swarm
-
摘要: 摘 要:【目的】针对含有未建模动态、外部环境干扰及未知集群参考信号的欠驱动无人船(UMVs)集群跟踪问题,提出UMVs集群运动决策机制和有限时间集群跟踪控制方法。【方法】首先,利用Lyapunov函数和人工势函数,结合集群虚拟参考船位置信息,构造速度制导的集群运动决策策略;其次,设计有限时间集总不确定观测器(FLUO),对速度误差方程中包含的未知信息进行补偿;进而,设计基于FLUO的非奇异终端滑模(NTSM)集群跟踪控制方法。【结果】基于李雅普诺夫稳定性理论和Matlab/Simulink仿真实验,证明系统在有限时间内稳定。【结论】基于所提出的集群决策策略和FLUO-NTSM控制方法,UMVs能够保持群集并实现精准路径跟踪。
-
关键词:
- 关键词:无人船集群决策 /
- 无人船集群控制 /
- 非奇异终端滑模控制 /
- 有限时间不确定观测器
Abstract: Abstract:[Objectives] Focusing on underactuated marine vehicles swarm tracking control problem with UMVs unmodeled dynamics, external environment disturbance and complex swarm reference signals, UMVs swarm motion decision and finite-time swarm tracking control scheme are studied. [Methods] Firstly, using the Lyapunov function and artificial potential function, combined with the position information of the swarm virtual reference vehicle (SVRV), a swarm motion decision strategy with velocity guidance is constructed. Secondly, a finite-time lumped uncertainty observer (FLUO) is designed to compensate for the unknown information contained in the velocity error equation. Furthermore, a non-singular terminal sliding mode (NTSM) swarn tracking control method based on FLUO is adopted to design the control law. [Results] Based on the Lyapunov stability theory and Matlab/Simulink simulation experiments, it is proved that the system is stable. [Conclusions] Based on the proposed swarm decision strategy and FLUO-NTSM control method, UMVs can keep swarm and achieve accurate path tracking. -
计量
- 文章访问数: 208
- 被引次数: 0