留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪中自由自航船舶轴系功率特性的数值预报方法

余嘉威 姚朝帮 张志国 冯大奎 王先洲

余嘉威, 姚朝帮, 张志国, 等. 波浪中自由自航船舶轴系功率特性的数值预报方法[J]. 中国舰船研究, 2022, 17(3): 119–125 doi: 10.19693/j.issn.1673-3185.02733
引用本文: 余嘉威, 姚朝帮, 张志国, 等. 波浪中自由自航船舶轴系功率特性的数值预报方法[J]. 中国舰船研究, 2022, 17(3): 119–125 doi: 10.19693/j.issn.1673-3185.02733
YU J W, YAO C B, ZHANG Z G, et al. Numerical prediction method of shafting power characteristics of free self-propelled ship in waves[J]. Chinese Journal of Ship Research, 2022, 17(3): 119–125 doi: 10.19693/j.issn.1673-3185.02733
Citation: YU J W, YAO C B, ZHANG Z G, et al. Numerical prediction method of shafting power characteristics of free self-propelled ship in waves[J]. Chinese Journal of Ship Research, 2022, 17(3): 119–125 doi: 10.19693/j.issn.1673-3185.02733

波浪中自由自航船舶轴系功率特性的数值预报方法

doi: 10.19693/j.issn.1673-3185.02733
基金项目: 国家自然科学基金资助项目(52071148);国家自然科学基金“叶企孙”科学基金重点资助项目(U2141228) ;中央高校基本科研业务费专项资金资助项目(2021JYCXJJ038)
详细信息
    作者简介:

    余嘉威,男,1996年生,博士生。研究方向:舰船水动力性能预报,新型推进数值模型,势黏流耦合。E-mail:yu_jiaw@hust.edu.cn

    姚朝帮,男,1987年生,博士,副教授。研究方向:船舶在波浪上的运动理论,多船/多浮体水动力干扰,船舶静水及波浪中操纵性,势黏流耦合方法。E-mail:yaochaobang@hust.edu.cn

    张志国,男,1962年生,博士,教授。研究方向:计算船舶水动力学,船舶水动力性能研究。E-mail:zzg@hust.edu.cn

    通信作者:

    姚朝帮

  • 中图分类号: U661.32+2

Numerical prediction method of shafting power characteristics of free self-propelled ship in waves

知识共享许可协议
波浪中自由自航船舶轴系功率特性的数值预报方法余嘉威,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为了研究船舶在波浪中约束模与自航模运动特性的差异以及船舶轴系功率特性,开展船舶波浪中自航性能数值仿真预报。  方法  首先,选取KCS船模和KP505桨模,采用URANS方法进行船舶波浪自由直航CFD模拟;然后,基于自研URANS求解器HUST-Ship与自研结构化动态重叠网格代码HUST-Overset,以及改进型体积力螺旋桨推进模型,对船舶在不同波浪条件下的运动响应进行耦合求解,包括两自由度KCS约束模运动仿真和三自由度自航模自由直航仿真,并对比这2种方法预报船舶运动特性的差异;最后,采用对数分析法得出波浪中船舶自由直航功率增加的主要成分及其具体占比。  结果  KCS船模在波浪中自航时,推进效率和波浪增阻对功率增加的贡献占比分别为23%~26%和74%~77%,即波浪增阻占比较大。  结论  因此,降低波浪中功率增加的最有效方法是减小船舶运动以降低波浪增阻。
  • 图  1  离散桨自航工况的结构重叠网格

    Figure  1.  Structured overset grid for self-propulsion case of discrete propeller

    图  2  规则波的仿真结果与理论结果对比

    Figure  2.  Comparison between simulation results and theoretical results of regular wave

    图  3  垂荡和纵摇运动响应的仿真曲线与试验曲线

    Figure  3.  Simulation curve and test curve of heave and pitch motion response

    图  4  KCS船模在不同波浪条件下自航过程中的螺旋桨转速和船速曲线

    Figure  4.  Propeller rotation speed and ship speed curves for KCS self-propulsion simulations under different wave conditions

    图  5  波浪中自航模与约束模的垂荡与纵摇响应曲线

    Figure  5.  Heave and pitch response curves with/without propeller in waves

    表  1  CFD仿真工况的参数设置

    Table  1.   Parameter setting of CFD simulation cases

    仿真工况编号波长λ/Lpp波高A/Lpp推进模型
    1静水静水w/o
    20.650.0108
    30.850.0142
    41.150.0192
    51.950.0325
    60.650.0108MOUM
    70.850.0142
    81.150.0192
    91.950.0325
    下载: 导出CSV

    表  2  不同网格和时间步长下的不确定度分析结果

    Table  2.   Uncertainty analysis results under different grids and time steps

    rG结果(UG / D) /%rT结果(UT / D) /%
    SG1SG2SG3ST1ST2ST3
    CT$ \sqrt 2$10.54211.81111.9994.04210.55211.81111.9140.29
    TF30.9220.9350.9381.120.9200.9350.9421.42
    TF51.1361.1111.1070.951.1311.1111.1031.20
    下载: 导出CSV

    表  3  基于试验数据的验证结果

    Table  3.   Validation results based on test data

    (UG / D) /%(UT / D) /%(USN / D) /%(UD / D) /%(UV / D) /%(E / D) /%
    CT4.040.294.3389.108.94
    TF31.121.422.5444.740.37
    TF50.951.202.1544.540.65
    下载: 导出CSV

    表  4  波浪增阻与波浪中自航的仿真结果

    Table  4.   Simulation results of added resistance and self-propulsion in waves

    λ/LppΔR/NQ/(N·m)n/(r·s−1
    静水02.04912.021
    0.6512.1292.32512.754
    0.85110.82.4113.092
    1.1545.5563.47415.227
    1.95115.9052.55513.475
    下载: 导出CSV
  • [1] ZHANG L, ZHANG J N, SHANG Y C. A practical direct URANS CFD approach for the speed loss and propulsion performance evaluation in short-crested irregular head waves[J]. Ocean Engineering, 2021, 219: 108287. doi: 10.1016/j.oceaneng.2020.108287
    [2] SIMONSEN C D, OTZEN J F, JONCQUEZ S, et al. EFD and CFD for KCS heaving and pitching in regular head waves[J]. Journal of Marine Science and Technology, 2013, 18(4): 435–459. doi: 10.1007/s00773-013-0219-0
    [3] 魏成柱, 易宏, 李英辉. 新概念高速穿梭艇系列船型及其直航性能[J]. 中国舰船研究, 2017, 12(2): 12–21. doi: 10.3969/j.issn.1673-3185.2017.02.002

    WEI C Z, YI H, LI Y H. Hull forms and straight forward CFD free running trials of high-speed shuttle vessels[J]. Chinese Journal of Ship Research, 2017, 12(2): 12–21 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.02.002
    [4] 张明霞, 卢鹏程, 王志豪. 小水线面三体船耐波性数值模拟[J]. 中国舰船研究, 2020, 15(4): 135–143,152.

    ZHANG M X, LU P C, WANG Z H. Numerical simulation of seakeeping performance of a trimaran small waterplane area center hull[J]. Chinese Journal of Ship Research, 2020, 15(4): 135–143,152 (in Chinese).
    [5] JIN Y T, CHAI S H, DUFFY J, et al. URANS predictions of wave induced loads and motions on ships in regular head and oblique waves at zero forward speed[J]. Journal of Fluids and Structures, 2017, 74: 178–204. doi: 10.1016/j.jfluidstructs.2017.07.009
    [6] 王建华, 万德成. 自航船舶在首斜浪中航向保持的数值模拟[J]. 水动力学研究与进展(A辑), 2018, 33(6): 740–748.

    WANG J H, WAN D C. Numerical investigations of free running ship in bow quartering waves under course keeping control[J]. Chinese Journal of Hydrodynamics, 2018, 33(6): 740–748 (in Chinese).
    [7] LEE C M, SEO J H, YU J W, et al. Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 883–898. doi: 10.1016/j.ijnaoe.2019.02.001
    [8] FENG D K, YU J W, HE R, et al. Improved body force propulsion model for ship propeller simulation[J]. Applied Ocean Research, 2020, 104: 102328. doi: 10.1016/j.apor.2020.102328
    [9] FENG D K, YU J W, HE R, et al. Free running computations of KCS with different propulsion models[J]. Ocean Engineering, 2020, 214: 107563. doi: 10.1016/j.oceaneng.2020.107563
    [10] YU J W, YAO C B, LIU L W, et al. Assessment of full-scale KCS free running simulation with body-force models[J]. Ocean Engineering, 2021, 237: 109570. doi: 10.1016/j.oceaneng.2021.109570
    [11] ZHANG Z G, GUO L X, WEI P, et al. Numerical simulation of submarine surfacing motion in regular waves[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2020, 44(2): 359–372. doi: 10.1007/s40997-018-0259-5
    [12] LIU L W, CHEN M X, YU J W, et al. Full-scale simulation of self-propulsion for a free-running submarine[J]. Physics of Fluids, 2021, 33(4): 047103. doi: 10.1063/5.0041334
    [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
    [14] BURG C O E. Single-phase level set simulations for unstructured incompressible flows[C]//17th AIAA Computational Fluid Dynamics Conference. Toronto, Canada: American Institute of Aeronautics and Astronautics Inc., 2005.
    [15] 冯大奎, 鲁晶晶, 魏鹏, 等. 基于Level-set方法的三维数值水池造波研究[J]. 水动力学研究与进展(A辑), 2018, 33(4): 435–444.

    FENG D K, LU J J, WEI P, et al. The research of wave-generating in 3-D numerical wave tank based on level-set method[J]. Chinese Journal of Hydrodynamics, 2018, 33(4): 435–444 (in Chinese).
    [16] CARRICA P M, CASTRO A M, STERN F. Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J]. Journal of Marine Science and Technology, 2010, 15(4): 316–330. doi: 10.1007/s00773-010-0098-6
    [17] Tokyo 2015. A workshop on CFD in ship hydrodynamics[DB/OL]. (2015-12-2)[ 2021-12-30]. https://t2015.nmri.go.jp/index.html.
    [18] 李亭鹤, 阎超. 二维DRAGON网格自动生成技术的研究[J]. 空气动力学学报, 2005, 23(1): 88–92. doi: 10.3969/j.issn.0258-1825.2005.01.017

    LI T H, YAN C. Investigation of automatic generation technique for two-dimensional DRAGON grid[J]. Acta Aerodynamica Sinica, 2005, 23(1): 88–92 (in Chinese). doi: 10.3969/j.issn.0258-1825.2005.01.017
    [19] 李亭鹤. 重叠网格自动生成方法研究[D]. 北京: 北京航空航天大学, 2004.

    LI T H. Investigation of chimera grid automatic generation algorithm[D]. Beijing: Beihang University, 2004 (in Chinese).
    [20] SANADA Y, KIM D H, SADAT-HOSSEINI H, et al. Assessment of experimental and CFD capability for KCS added power in head and oblique waves[C]//33rd Symposium on Naval Hydrodynamics. Osaka, Japan: [s. n. ], 2020.
  • ZG2733_en.pdf
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  74
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-20
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回