留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下爆炸载荷下复合点阵夹层结构冲击响应分析

毛柳伟 祝心明 黄治新 李营

毛柳伟, 祝心明, 黄治新, 等. 水下爆炸载荷下复合点阵夹层结构冲击响应分析[J]. 中国舰船研究, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503
引用本文: 毛柳伟, 祝心明, 黄治新, 等. 水下爆炸载荷下复合点阵夹层结构冲击响应分析[J]. 中国舰船研究, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503
MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503
Citation: MAO L W, ZHU X M, HUANG Z X, et al. Impact response of composite lattice sandwich plate structure subjected to underwater explosion[J]. Chinese Journal of Ship Research, 2022, 17(3): 253–263 doi: 10.19693/j.issn.1673-3185.02503

水下爆炸载荷下复合点阵夹层结构冲击响应分析

doi: 10.19693/j.issn.1673-3185.02503
基金项目: 国家自然科学基金资助项目(11802030)
详细信息
    作者简介:

    毛柳伟,男,1985年生,博士,高级工程师。研究方向:舰船爆炸毁伤评估,舰船总体论证研究。E-mail:mlw_18@163.com

    李营,男,1988年生,博士,教授。研究方向:爆炸毁伤与防护。 E-mail:bitliying@bit.edu.cn

    通信作者:

    李营

  • 中图分类号: U661.4

Impact response of composite lattice sandwich plate structure subjected to underwater explosion

知识共享许可协议
水下爆炸载荷下复合点阵夹层结构冲击响应分析毛柳伟,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为提升舰船的水下抗爆能力,针对水下爆炸冲击波作用下新型防护结构碳纤维增强复合材料(CFRP)−点阵铝夹芯板的抗冲击能量吸收性能展开研究。  方法  首先,利用有限元软件ABAQUS建立非药式非接触水下爆炸载荷下CFRP−点阵铝夹芯板的数值仿真模型,并验证其可靠性;然后,通过控制单一变量来分析CFRP−点阵铝夹芯板上、下面板每层纤维厚度和点阵夹芯结构杆件直径对其能量吸收性能与结构挠度的影响;最后,基于上述3种设计参数,采用实验设计方法和数值模拟方法建立代理优化模型,用于对CFRP−点阵铝夹芯板结构的能量吸收性能进行优化设计。  结果  结果显示:在CFRP−点阵铝夹芯板质量恒定的情况下,其优化结果可使比吸收能提高284%;在充分考虑下面板变形的情况下,优化结果的比吸收能可提高59%。  结论  研究表明,该CFRP−点阵铝夹芯板优化结构可有效提升其能量吸收性能,而响应面法是一种可有效提高结构能量吸收性能的优化方法。
  • 图  1  外切中心复合设计

    Figure  1.  Central composite circumscribed design

    图  2  随机拉丁超立方抽样

    Figure  2.  Random Latin hypercube sampling

    图  3  CFRP−点阵铝夹芯板的有限元模型

    Figure  3.  Finite element model of CFRP - lattice aluminum sandwich plate

    图  4  铝合金屈服应力−塑性应变曲线

    Figure  4.  Yield stress-plastic strain curve of aluminum alloy

    图  5  铝板冲击响应计算模型

    Figure  5.  Calculation model of impact response of aluminum plate

    图  6  铝板在水下冲击波载荷作用下变形过程剖面图

    Figure  6.  Profile of deformation process of aluminum plate under underwater shock wave load

    图  7  管口处冲击波压力峰值

    Figure  7.  Peak value of shock wave pressure at the tube opening

    图  8  CFRP板的动力响应

    Figure  8.  Dynamic response of CFRP plate

    图  9  改变上面板每层纤维厚度的仿真结果

    Figure  9.  Simulation results of changing the fiber thickness of each layer of the upper panel

    图  10  改变点阵杆件直径的仿真结果

    Figure  10.  Simulation results of changing the diameter of lattice rod

    图  11  改变下面板每层纤维厚度的仿真结果

    Figure  11.  Simulation results of changing the fiber thickness of each layer of the lower panel

    图  12  响应曲面

    Figure  12.  Response surface

    图  13  优化模拟仿真结果

    Figure  13.  Optimization simulation results

    表  1  CFRP板部分材料参数(单层)

    Table  1.   Partial material parameters of CFRP (lamina)

    参数数值
    密度/(g·cm−3)1.56
    杨氏模量/MPa42 700
    剪切模量/MPa4 400
    泊松比0.05
    抗拉强度/MPa658
    抗压强度/MPa269
    剪切损伤初始剪应力/MPa37
    下载: 导出CSV

    表  2  铝合金部分材料参数

    Table  2.   Partial material parameters of aluminum alloy

    参数数值
    密度/(g·cm−3)2.7
    杨氏模量/MPa69 000
    泊松比0.33
    断裂应变0.125
    下载: 导出CSV

    表  3  水的材料参数

    Table  3.   Material parameters of water

    参数数值
    密度/(g·cm−3)1
    ${c_0}$/(m·s−1)1 480
    $s$0
    ${\varGamma _0}$0
    比热/(J·kg−1∙℃−1)4.2×103
    动力黏度/(Pa∙s)1×10−3
    下载: 导出CSV

    表  4  CFRP−点阵铝夹芯板模型尺寸参数

    Table  4.   Model parameters of CFRP−lattice aluminum sandwich plate

    参数数值
    上面板每层纤维厚${t_1}$/mm0.250
    Octet点阵杆件直径${t_2}$/mm1.000
    下面板每层纤维厚${t_3}$/mm0.250
    能量/J107.211
    质量/kg8.892
    比吸收能SEA/(J·kg−1)12.057
    下面板最大位移Deflection/mm5.499
    下载: 导出CSV

    表  5  不同工况下的仿真结果

    Table  5.   Simulation results at different working conditions

    工况编号上面板每层纤维厚${t_1}$/mmOctet杆件直径${t_2}$/mm下面板每层纤维厚${t_3}$/mm能量/J质量/kg比吸收能
    SEA/(J·kg−1)
    下面板最大位移
    Deflection/mm
    A0.251.00.25107.2118.89212.0575.499
    B0.101.00.2533.4678.7253.8365.796
    C0.401.00.2541.0259.0594.5295.516
    D0.250.80.2582.5678.8739.3065.032
    E0.251.20.25120.0518.91613.4645.699
    F0.251.00.10105.0248.72512.0367.232
    G0.251.00.40103.3099.05911.4044.801
    下载: 导出CSV

    表  6  实验设计代理优化模型及其仿真结果

    Table  6.   Experimental design surrogate optimization model and its simulation results

    工况编号上面板每层
    纤维厚${t_1}$/mm
    Octet杆件
    直径${t_2}$/mm
    下面板每层
    纤维厚${t_3}$/mm
    能量/J质量/kg比吸能
    SEA/(J·kg−1)
    下面板最大位移
    Deflection/mm
    10.2501.0000.250107.2118.89212.0575.499
    20.3661.3120.386210.0629.21222.8035.352
    30.1060.8730.31374.1008.7898.4315.391
    40.1411.4410.150216.9528.71924.8837.522
    50.1440.7820.10351.8738.5906.0396.443
    60.2890.9810.367108.3209.06411.9514.872
    70.3480.5260.18937.2658.8944.1904.679
    80.3981.3930.220291.2829.07532.0976.580
    90.3041.0960.122168.3058.82119.0807.027
    100.3251.0580.280165.5719.01618.3655.361
    110.1851.5600.263386.7898.91343.3976.406
    120.2390.4840.35026.7548.9492.9894.351
    130.2670.6400.17844.8728.7995.1005.189
    140.1921.2330.233221.4908.83725.0636.165
    150.2150.7260.33430.6978.9213.4414.794
    下载: 导出CSV

    表  7  能量吸收优化设计及模拟结果

    Table  7.   Optimization design and simulation results of energy absorption

    参数优化结果模拟结果
    能量/J411.272
    质量/kg8.885
    比吸收能SEA/(J·kg−1)45.30046.287
    下面板最大位移Deflection/mm8.7578.327
    下载: 导出CSV

    表  8  能量吸收与变形优化设计及模拟结果

    Table  8.   Optimization design and simulation results of energy absorption and deformation

    参数优化结果模拟结果
    能量/J170.233
    质量/kg8.889
    比吸收能SEA/(J·kg−1)18.36719.151
    下面板位移Deflection/mm5.4995.467
    下载: 导出CSV
  • [1] 张阿漫, 王诗平, 汪玉, 等. 水下爆炸对舰船结构损伤特征研究综述[J]. 中国舰船研究, 2011, 6(3): 1–7. doi: 10.3969/j.issn.1673-3185.2011.03.001

    ZHANG A M, WANG S P, WANG Y, et al. Advances in the research of characteristics of warship structural damage due to underwater explosion[J]. Chinese Journal of Ship Research, 2011, 6(3): 1–7 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.001
    [2] 辛春亮, 秦健, 徐更光, 等. 数值模拟软件在水下爆炸模拟中的应用研究[C]//第四届全国爆炸力学实验技术学术会议. 武夷山: 中国力学学会, 2006.

    XIN C L, QIN J, XU G G, et al. Application of numerical simulation software in underwater explosion simulation[C]//The 4th National Conference on Experimental Technology of Explosion Mechanics. Mount Wuyi: Chinese Society of Mechanics, 2006 (in Chinese).
    [3] 焦安龙, 贾则, 陈高杰. 基于ABAQUS的近距水下爆炸对舰艇的冲击响应研究[J]. 电子设计工程, 2015, 23(10): 179–181, 185. doi: 10.3969/j.issn.1674-6236.2015.10.053

    JIAO A L, JIA Z, CHEN G J. The research of shock response on warship subjected to a close underwater explosion based on ABAQUS[J]. Electronic Design Engineering, 2015, 23(10): 179–181, 185 (in Chinese). doi: 10.3969/j.issn.1674-6236.2015.10.053
    [4] 库尔 P. 水下爆炸[M]. 罗耀杰, 韩润泽, 官信, 等译. 北京: 国防工业出版社, 1960.

    COLE P. Underwater explosion[M]. LUO Y J, HAN R Z, GUAN X, et al, trans. Beijing: National Defense Industry Press, 1960 (in Chinese).
    [5] GEERS T L. Doubly asymptotic approximations for transient motions of submerged structures[J]. Journal of the Acoustical Society of America, 1978, 64(5): 1500–1508. doi: 10.1121/1.382093
    [6] 李国华, 李玉节, 张效慈, 等. 浮动冲击平台水下爆炸冲击谱测量与分析[J]. 船舶力学, 2000, 4(2): 51–60.

    LI G H, LI Y J, ZHANG X C, et al. Shock spectrum measurement and analysis of underwater explosion on a floating shock platform[J]. Journal of Ship Mechanics, 2000, 4(2): 51–60 (in Chinese).
    [7] BERNAL OSTOS J, RINALDI R G, HAMMETTER C M, et al. Deformation stabilization of lattice structures via foam addition[J]. Acta Materialia, 2012, 60(19): 6476–6485. doi: 10.1016/j.actamat.2012.07.053
    [8] 姚熊亮, 侯健, 王玉红, 等. 水下爆炸冲击载荷作用时船舶冲击环境仿真[J]. 中国造船, 2003, 44(1): 71–74. doi: 10.3969/j.issn.1000-4882.2003.01.011

    YAO X L, HOU J, WANG Y H, et al. Research on simulation of underwater shock environment of ship[J]. Shipbuilding of China, 2003, 44(1): 71–74 (in Chinese). doi: 10.3969/j.issn.1000-4882.2003.01.011
    [9] YU J, LIU G Z, WANG J, et al. An effective method for modeling the load of bubble jet in underwater explosion near the wall[J]. Ocean Engineering, 2021, 220: 108408. doi: 10.1016/j.oceaneng.2020.108408
    [10] JIANG X W, ZHANG W, LI D C, et al. Experimental analysis on dynamic response of pre-cracked aluminum plate subjected to underwater explosion shock loadings[J]. Thin-Walled Structures, 2021, 159: 107256. doi: 10.1016/j.tws.2020.107256
    [11] WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion[J]. Engineering Structures, 2020, 209: 109996. doi: 10.1016/j.engstruct.2019.109996
    [12] 姚熊亮, 王玉红, 史冬岩, 等. 圆筒结构水下爆炸数值实验研究[J]. 哈尔滨工程大学学报, 2002, 23(1): 5–8,36. doi: 10.3969/j.issn.1006-7043.2002.01.002

    YAO X L, WANG Y H, SHI D Y, et al. Numerical experiment on underwater explosion of cylinder[J]. Journal of Harbin Engineering University, 2002, 23(1): 5–8,36 (in Chinese). doi: 10.3969/j.issn.1006-7043.2002.01.002
    [13] HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses[J]. International Journal of Impact Engineering, 2019, 130: 266–280. doi: 10.1016/j.ijimpeng.2019.04.018
    [14] 韩阳. 爆炸载荷及其作用下的舰船结构响应数值模拟[D]. 武汉: 华中科技大学, 2019.

    HAN Y. A numerical simulation of explosion loads and bull response[D]. Wuhan: Huazhong University of Science & Technology, 2019 (in Chinese).
    [15] HUANG Z X, ZHANG X, YANG C Y. Experimental and numerical studies on the bending collapse of multi-cell aluminum/CFRP hybrid tubes[J]. Composites Part B: Engineering, 2020, 181: 107527. doi: 10.1016/j.compositesb.2019.107527
    [16] 艾冬杰. 水下接触及非接触近场爆炸载荷下泡沫铝夹芯板结构失效机理与吸能特性研究[D]. 武汉: 华中科技大学, 2017.

    AI D J. Research on failure mechanism and energy absorption characteristics of sandwich panels with aluminum foam core under contact and non-contact near-field water blast loading[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese).
    [17] ELSAYYED M S A, DAMIANO P. Multiscale model of the effective properties of the octet-truss lattice material[C]//USA: Aiaa/issmo Multidisciplinary Analysis and Optimization Conference, 2008: 847-850.
    [18] USHIJIMA K, CANTWELL W J, MINES R A W, et al. An investigation into the compressive properties of stainless steel micro-lattice structures[J]. Journal of Sandwich Structures & Materials, 2011, 13(3): 303–329.
    [19] DENARDO N, PINTO M, SHUKLA A. Hydrostatic and shock-initiated instabilities in double-hull composite cylinders[J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 96–116. doi: 10.1016/j.jmps.2017.10.020
    [20] ZHANG X, ZHANG H, WANG Z. Bending collapse of square tubes with variable thickness[J]. International Journal of Mechanical Sciences, 2016, 106: 107–116. doi: 10.1016/j.ijmecsci.2015.12.006
    [21] 张雄. 轻质薄壁结构耐撞性分析与设计优化[D]. 大连: 大连理工大学, 2007.

    ZHANG X. Crashworthiness analysis and design optimization of light thin-walled structures[D]. Dalian: Dalian University of Technology, 2007 (in Chinese).
    [22] 张志红, 何桢, 郭伟. 在响应曲面方法中三类中心复合设计的比较研究[J]. 沈阳航空工业学院学报, 2007, 24(1): 87–91.

    ZHANG Z H, HE Z, GUO W. A comparative study of three central composite designs in response surface methodology[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2007, 24(1): 87–91 (in Chinese).
    [23] MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239–245.
    [24] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2067): 1021-1041.
    [25] 任鹏. 非药式水下冲击波加载技术及铝合金结构抗冲击特性研究[D]. 武汉: 华中科技大学, 2017.

    REN P. Research on non-explosive underwater shock loading technique and blast resistant properties of aluminium alloy structures[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese).
    [26] LI Y, CHEN Z H, ZHAO T, et al. An experimental study on dynamic response of polyurea coated metal plates under intense underwater impulsive loading[J]. International Journal of Impact Engineering, 2019, 133: 103361. doi: 10.1016/j.ijimpeng.2019.103361
    [27] HUANG W, JIA B, ZHANG W, et al. Dynamic failure of clamped metallic circular plates subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2016, 94: 96–108. doi: 10.1016/j.ijimpeng.2016.04.006
    [28] 朱凌雪, 王同银, 朱晓磊. 基于梯度化因子功能梯度点阵夹层结构优化设计[J]. 振动与冲击, 2018, 37(23): 98–103,110.

    ZHU L X, WANG T Y, ZHU L X. Optimization design of a functionally graded lattice sandwich structure based on gradient factor[J]. Journal of Vibration and Shock, 2018, 37(23): 98–103,110 (in Chinese).
  • ZG2503_en.pdf
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  61
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-26
  • 修回日期:  2021-09-17
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回