留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层流中潜艇加减速对尾迹特征特性的影响

于祥 胡开业

于祥, 胡开业. 分层流中潜艇加减速对尾迹特征特性的影响[J]. 中国舰船研究, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490
引用本文: 于祥, 胡开业. 分层流中潜艇加减速对尾迹特征特性的影响[J]. 中国舰船研究, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490
YU X, HU K Y. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490
Citation: YU X, HU K Y. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77, 101 doi: 10.19693/j.issn.1673-3185.02490

分层流中潜艇加减速对尾迹特征特性的影响

doi: 10.19693/j.issn.1673-3185.02490
基金项目: 国家自然科学基金资助项目(51779053)
详细信息
    作者简介:

    于祥,男,1995年生,硕士生。研究方向:计算流体力学。E-mail:1030279961@qq.com

    胡开业,男,1980年生,博士,副教授。研究方向:舰船水动力和潜航体非声隐身。E-mail:hukaiye@hrbeu.edu.cn

    通信作者:

    胡开业

  • 中图分类号: U661.1

Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow

知识共享许可协议
分层流中潜艇加减速对尾迹特征特性的影响于祥,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在研究分层流中潜艇加减速对尾迹特征特性的影响规律,为潜艇尾迹隐身提供理论依据。  方法  应用CFD技术,首先验证该技术模拟潜艇运动对自由面兴波的准确性,再基于自由面兴波与其辐聚辐散场、内波速度场进行分析,对实尺度潜艇进行加减速航行模拟。通过对自由面速度场求散度,深入研究潜艇加、减速对自由面及跃层的影响。  结果  研究表明:潜艇进行非定常运动时,尾流场横波、散波分布规律较匀速运动截然不同,其兴波夹角增减约10%~25%,且兴波峰值位置明显前置与后置,结合波高及速度散度场得到潜艇加、减速造成自由表面辐聚辐散效应的差异。  结论  当潜深和分层模式等相同,潜艇减速时,可降低尾流场扰动、兴波高度及其粗糙度,加速状态可显著增加潜艇近场扰动与被探测概率。
  • 图  1  Rankine卵形体三维模型

    Figure  1.  Three-dimensional model of Rankine ovoid

    图  2  卵形体计算域网格划分

    Figure  2.  Meshing of computational domain for ovoid

    图  3  数值模拟验证

    Figure  3.  Numerical simulation verification

    图  4  潜艇计算模型

    Figure  4.  Submarine computational model

    图  5  潜艇计算域网格划分

    Figure  5.  Meshing of computational domain for submarine

    图  6  不同网格数自由面兴波

    Figure  6.  Free surface wave-making with different grid numbers

    图  7  内界面兴波

    Figure  7.  Wave-making of the internal interface

    8  自由面兴波

    8.  Free surface wave-making

    图  9  自由面兴波截面

    Figure  9.  The cross-section of free surface wave-making

    图  10  自由面辐聚辐散强度

    Figure  10.  Free surface convergence-divergence intensity

    11  垂向速度场分布

    11.  Distribution of vertical velocity field

    12  内界面速度场分布

    12.  Distribution of internal interface velocity field

    表  1  计算工况

    Table  1.   Calculation cases

    工况分层形式速度区间/kn加速时间/s运动状态潜深/m
    A1强分层120匀速20
    A2强分层160匀速20
    A3强分层200匀速20
    B1强分层12~1640匀加速20
    B2强分层16~1240匀减速20
    B3强分层12~2040匀加速20
    B4强分层20~1240匀减速20
    下载: 导出CSV
  • [1] 马卫状, 丁勇, 李云波, 等. 稳定分层流数值模拟方法及圆球绕流特征研究[J]. 船舶力学, 2020, 24(10): 1278–1287. doi: 10.3969/j.issn.1007-7294.2020.10.006

    MA W Z, DING Y, LI Y B, et al. On the numerical methods of the stable stratified flows and wake characteristics around a sphere[J]. Journal of Ship Mechanics, 2020, 24(10): 1278–1287 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.10.006
    [2] 丁勇, 韩盼盼, 段菲, 等. 线性分层流中圆柱绕流数值模拟方法研究[J]. 哈尔滨工程大学学报, 2016, 37(9): 1179–1183.

    DING Y, HAN P P, DUAN F, et al. Numerical study of linearly stratified flow past a cylinder based on a multiphase mixture model[J]. Journal of Harbin Engineering University, 2016, 37(9): 1179–1183 (in Chinese).
    [3] 丁勇, 段菲, 韩盼盼, 等. 两层流中潜艇运动与诱发内波特征关系研究[J]. 船舶力学, 2016, 20(5): 523–529. doi: 10.3969/j.issn.1007-7294.2016.05.002

    DING Y, DUAN F, HAN P P, et al. Research on the relationship between moving patterns of submerged body and the features of induced internal waves in two layer fluid[J]. Journal of Ship Mechanics, 2016, 20(5): 523–529 (in Chinese). doi: 10.3969/j.issn.1007-7294.2016.05.002
    [4] 牛明昌, 丁勇, 马卫状, 等. 基于温度异重流模型的连续分层流数值模拟方法研究[J]. 船舶力学, 2017, 21(8): 941–949. doi: 10.3969/j.issn.1007-7294.2017.08.002

    NIU M C, DING Y, MA W Z, et al. Research on the numerical simulation methods of continuously stratified flows based on thermal density current model[J]. Journal of Ship Mechanics, 2017, 21(8): 941–949 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.08.002
    [5] VOROPAYEV S I, FERNANDO H J S. Wakes of maneuvering body in stratified fluids[M]. Progress in Industrial Mathematics at ECMI, Springer, 2010: 261–266.
    [6] VOROPAYEV S I, MCEACHERN G B, FERNANDO H J S, et al. Large vortex structures behind a maneuvering body in stratified fluids[J]. Physics of Fluids, 1999, 11(6): 1682–1684. doi: 10.1063/1.870030
    [7] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 7–10.

    WANG F J. Computational fluid dynamics analysis-software of CFD principles and applications[M]. Beijing: Tsinghua University Press, 2004: 7–10 (in Chinese).
    [8] 李士强, 肖昌润, 曹植珺. 基于STAR-CCM+的潜艇尾流场及水动力数值分析[J]. 中国舰船研究, 2018, 13(S1): 29–35. doi: 10.19693/j.issn.1673-3185.01216

    LI S Q, XIAO C R, CAO Z J. Numerical analysis of wake flow and hydrodynamics for a submarine based on STAR-CCM+[J]. Chinese Journal of Ship Research, 2018, 13(S1): 29–35. doi: 10.19693/j.issn.1673-3185.01216
    [9] 周智超, 刘永辉, 冷画屏. 水面舰艇防潜作战模拟训练的计算机仿真研究[J]. 计算机仿真, 2002, 19(3): 1–4. doi: 10.3969/j.issn.1006-9348.2002.03.001

    ZHOU Z C, LIU Y H, LENG H P. Research of computer simulation on surface ship anti-submarine defence imitative training[J]. Computer Simulation, 2002, 19(3): 1–4 (in Chinese). doi: 10.3969/j.issn.1006-9348.2002.03.001
    [10] 陈建华. 舰艇作战模拟理论与实践[M]. 北京: 国防工业出版社, 2002.

    CHEN J H. The theory and practice of naval combat simulation[M]. Beijing: National Defense Industry Press, 2002 (in Chinese).
    [11] ALPERS W, HENNINGS I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar[J]. Journal of Geophysical Research:Oceans, 1984, 89(C6): 10529–10546. doi: 10.1029/JC089iC06p10529
    [12] ALPERS W R, ROSS D B, RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research:Oceans, 1981, 86(C7): 6481–6498. doi: 10.1029/JC086iC07p06481
    [13] SHAFFER D A. Surface waves generated by submerged rankine ovoids starting from rest[R]. Washington, DC: David Taylor Model Basin, 1966.
    [14] 刘金芳, 毛可修, 张晓娟, 等. 中国海密度跃层分布特征概况[J]. 海洋预报, 2013, 30(6): 21–27. doi: 10.11737/j.issn.1003-0239.2013.06.004

    LIU J F, MAO K X, ZHANG X J, et al. The general distribution characteristics of pycnocline of China Sea[J]. Marine Forecasts, 2013, 30(6): 21–27 (in Chinese). doi: 10.11737/j.issn.1003-0239.2013.06.004
    [15] 江伟, 李培, 高文洋, 等. 西北太平洋密度跃层特征分析[J]. 海洋预报, 2010, 27(2): 15–21. doi: 10.3969/j.issn.1003-0239.2010.02.003

    JIANG W, LI P, GAO W Y, et al. Pycnocline analysis on the Northwest Pacific Ocean[J]. Marine Forecasts, 2010, 27(2): 15–21 (in Chinese). doi: 10.3969/j.issn.1003-0239.2010.02.003
  • ZG2490_en.pdf
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  104
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-09-09
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回