留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合Savitsky方法和重叠网格技术的滑行艇阻力数值计算与分析

郭军 扈喆 朱子文 陈作钢 崔连正 李贵斌

郭军, 扈喆, 朱子文, 等. 结合Savitsky方法和重叠网格技术的滑行艇阻力数值计算与分析[J]. 中国舰船研究, 2022, 17(3): 126–134 doi: 10.19693/j.issn.1673-3185.02417
引用本文: 郭军, 扈喆, 朱子文, 等. 结合Savitsky方法和重叠网格技术的滑行艇阻力数值计算与分析[J]. 中国舰船研究, 2022, 17(3): 126–134 doi: 10.19693/j.issn.1673-3185.02417
GUO J, HU Z, ZHU Z W, et al. Numerical calculation and analysis of resistance performance of planing craft combining Savitsky method and overset grid technology[J]. Chinese Journal of Ship Research, 2022, 17(3): 126–134 doi: 10.19693/j.issn.1673-3185.02417
Citation: GUO J, HU Z, ZHU Z W, et al. Numerical calculation and analysis of resistance performance of planing craft combining Savitsky method and overset grid technology[J]. Chinese Journal of Ship Research, 2022, 17(3): 126–134 doi: 10.19693/j.issn.1673-3185.02417

结合Savitsky方法和重叠网格技术的滑行艇阻力数值计算与分析

doi: 10.19693/j.issn.1673-3185.02417
基金项目: 福建省中青年教师教育科研项目(JAT200243,JAT190333);福建省自然科学基金资助项目(2021J05163)
详细信息
    作者简介:

    郭军,男,1992年生,博士,副教授。研究方向:船舶计算流体力学。E-mail:guojun6049@163.com

    扈喆,男,1988年生,博士,教授。研究方向:船舶与海洋结构物研发与应用。E-mail:zhehu@jmu.edu.cn

    朱子文,男,1991年生,博士,讲师。研究方向:计算流体力学。E-mail:zwzhu@jmu.edu.cn

    陈作钢,男,1967年生,博士,研究员。研究方向:船舶计算流体力学,风洞循环水槽研发与应用。E-mail:zgchen@sjtu.edu.cn

    通信作者:

    陈作钢

  • 中图分类号: U661.31+1

Numerical calculation and analysis of resistance performance of planing craft combining Savitsky method and overset grid technology

知识共享许可协议
结合Savitsky方法和重叠网格技术的滑行艇阻力数值计算与分析郭军,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为提高数值预报精度,对滑行艇的静水阻力高精度数值模拟方法进行研究。  方法  应用计算流体动力学(CFD)方法,结合Savitsky方法和重叠网格技术,对滑行艇在静水中的三维黏性流场进行数值模拟,并对不同载荷系数和航速下滑行艇的流场特性进行分析。  结果  结果显示,滑行艇的阻力、升沉及纵倾角等计算结果与试验结果吻合良好,艇底的喷溅现象及水气分布模拟正常,表明采用所提方法可以准确、有效地预报滑行艇的阻力性能;随着载荷系数的增加,龙骨线压力系数的峰值增加,压力中心位置逐渐前移;随着航速的增加,龙骨线压力系数的峰值减小,压力中心位置逐渐后移,驻点线与中纵剖面的夹角减小,艇后“空穴”的深度减小、长度增大。  结论  所做研究可为滑行艇阻力预报提供一种准确、有效的数值计算方法,能为滑行艇水动力性能数值研究提供技术支撑。
  • 图  1  滑行艇模型

    Figure  1.  Geometry model of planing craft

    图  2  计算域和边界条件

    Figure  2.  Computational domain and boundary conditions

    图  3  计算域网格

    Figure  3.  Grid of computational domain

    图  4  滑行艇的航态估算

    Figure  4.  Attitude estimation of planing craft

    图  5  升沉计算值与试验值对比

    Figure  5.  Comparison of heaving between CFD and EFD results

    图  6  纵倾计算值与试验值对比

    Figure  6.  Comparison of trim between CFD and EFD results

    图  7  阻力计算值与试验值对比

    Figure  7.  Comparison of resistance between CFD and EFD results

    图  8  平均浸湿长度计算值与试验值对比

    Figure  8.  Comparison of average wet length between CFD and EFD results

    图  9  不同载荷工况下的压力分布

    Figure  9.  Pressure distribution at different load conditions

    图  10  不同航速下的压力分布

    Figure  10.  Pressure distribution at different speeds

    图  11  不同航速下y = 0剖面的自由面波高对比

    Figure  11.  Wave pattern of y = 0 at different speeds

    图  12  不同航速下的自由波面分布

    Figure  12.  Free wave surface distribution at different speeds

    13  不同航速下的滑行艇表面的水气分布

    13.  Volume fraction of water of planing craft at different speeds

    表  1  滑行艇的载荷工况

    Table  1.   Load conditions of planing craft

    工况载荷系数吃水/m重心纵向位置/m重心垂向位置/m
    10.3040.0260.4000.067
    20.6080.0420.4570.067
    30.9120.0570.4570.067
    下载: 导出CSV

    表  2  航态预估对阻力预报的影响

    Table  2.   Influence of trim estimation on resistance prediction

    方法σ/Bθ/(°)CtLwet /B
    试验结果 (EFD)0.0644.150.006823.41
    重叠网格0.0583.940.007523.54
    Savitsky+重叠网格0.0604.070.007253.47
    下载: 导出CSV
  • [1] SAVITSKY D. Hydrodynamic design of planing hulls[J]. Marine Technology, 1964, 1(4): 71–95.
    [2] BRIZZOLARA S, SERRA F. Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics[C]//2nd International Conference on Marine Research and Transportation, 2007.
    [3] 曹洪建. 基于FLUENT的滑行艇阻力计算研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.

    CAO H J. The computation and research on resistance of planing craft on the software FLUENT[D]. Harbin: Harbin Engineering University, 2008 (in Chinese).
    [4] GHADIMI P, MIRHOSSEINI S H, DASHTIMANESH A, et al. RANS simulation of dynamic trim and sinkage of a planing hull[J]. Applied Mathematics and Physics, 2013, 1(1): 6–10.
    [5] 马伟佳, 庞永杰, 孙华伟, 等. 混合网格在滑行艇阻力数值模拟中的应用[J]. 船舶工程, 2013, 35(4): 8–10, 58.

    MA W J, PANG Y J, SONG H W, et al. Application of mixed grid in numerical simulation of planning-hull resistance[J]. Ship Engineering, 2013, 35(4): 8–10, 58 (in Chinese).
    [6] 蒋一. 基于CFD的超高速三体滑行艇快速性分析[D]. 哈尔滨: 哈尔滨工程大学, 2013.

    JIANG Y. CFD-based analysis on speed performance of high-speed trimaran planing boat[D]. Harbin: Harbin Engineering University, 2013 (in Chinese).
    [7] LOTFI P, ASHRAFIZAADEH M, ESFAHAN R K. Numerical investigation of a stepped planing hull in calm water[J]. Ocean Engineering, 2015, 94: 103–110. doi: 10.1016/j.oceaneng.2014.11.022
    [8] FRISK D, TEGEHALL L. Prediction of high-speed planing hull resistance and running attitude[D]. Gothenburg, Sweden: Chalmers University of Technology, 2015.
    [9] DE MARCO A, MANCINI S, MIRANDA S, et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research, 2017, 64: 135–154. doi: 10.1016/j.apor.2017.02.004
    [10] 孙华伟, 马伟佳, 朱江波. 影响滑行艇阻力数值计算的网格因素研究[J]. 中国造船, 2015, 56(2): 170–178.

    SUN H W, MA W J, ZHU J B. Research on grid factor in numerical calculation of planing craft resistance[J]. Shipbuilding of China, 2015, 56(2): 170–178 (in Chinese).
    [11] 邵文勃, 马山, 段文洋, 等. 基于CFD技术的滑行艇静水阻力计算[J]. 船舶工程, 2019, 41(9): 41–45,137.

    SHAO W B, MA S, DUAN W Y, et al. Calm-water resistance calculation of planing craft based on CFD method[J]. Ship Engineering, 2019, 41(9): 41–45,137 (in Chinese).
    [12] 魏子凡, 井升平, 杨松林. 新型高速艇的CFD模拟和对比分析[J]. 中国舰船研究, 2016, 11(4): 22–28.

    WEI Z F, JING S P, YANG S L. CFD simulation and comparison analysis of a new type high-speed boat[J]. Chinese Journal of Ship Research, 2016, 11(4): 22–28 (in Chinese).
    [13] 丁江明, 江佳炳, 秦江涛, 等. 高速滑行艇阻力性能RANS计算中网格影响因素[J]. 哈尔滨工程大学学报, 2019, 40(6): 1065–1071.

    DING J M, JIANG J B, QIN J T, et al. Influencing mesh factors in the calculation of the resistance performance of high-speed planing crafts through RANS[J]. Journal of Harbin Engineering University, 2019, 40(6): 1065–1071 (in Chinese).
    [14] 易文彬, 王永生, 彭云龙, 等. 滑行艇阻力数值预报若干影响因素研究[J]. 华中科技大学学报(自然科学版), 2017, 45(9): 120–126.

    YI W B, WANG Y S, PENG Y L, et al. Research on several influence factors in numerical prediction of planning craft resistance[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(9): 120–126 (in Chinese).
    [15] 李屺楠, 秦江涛, 周利兰. 基于重新建模法的滑行艇阻力数值计算[J]. 船舶工程, 2020, 42(1): 42–46, 121.

    LI Q N, QIN J T, ZHOU L L. Numerical calculation of planing boat resistance based on remesh method[J]. Ship Engineering, 2020, 42(1): 42–46, 121 (in Chinese).
    [16] 王慧, 朱仁传, 杨云涛, 等. 基于CFD的滑行艇兴波与姿态模拟分析[J]. 中国造船, 2020, 61(3): 1–14.

    WANG H, ZHU R C, YANG Y T, et al. Simulation and analysis of wave-making and attitudes of planing hull by CFD[J]. Shipbuilding of China, 2020, 61(3): 1–14 (in Chinese).
    [17] FRIDSMA G. A systematic study of the rough-water performance of planing boats. irregular waves-part II[R]. New Jersey: Davidson Laboratory Stevens Institute of Technology, 1969.
    [18] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 7-12.

    WANG F J. Computational fluid dynamics analysis—principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004: 7-12 (in Chinese).
    [19] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201–225. doi: 10.1016/0021-9991(81)90145-5
    [20] ITTC. The specialist committee on CFD in marine hydrodynamics-recommended procedures and guidelines: practical guidelines for ship CFD applications[C]//Proceeding of the 26th ITTC. Rio de Janeiro, Brazil: ITTC, 2011.
    [21] GUO J, CHEN Z G, DAI Y X. Numerical study on self-propulsion of a waterjet propelled trimaran[J]. Ocean Engineering, 2020, 195: 106655. doi: 10.1016/j.oceaneng.2019.106655
    [22] GUO J, ZHANG Y, CHEN Z G, et al. CFD-based multi-objective optimization of a waterjet-propelled trimaran[J]. Ocean Engineering, 2020, 195: 106755. doi: 10.1016/j.oceaneng.2019.106755
    [23] 李昆鹏, 魏成柱, 梁晓锋. 多面体网格在滑行艇数值仿真计算中的应用[J]. 舰船科学技术, 2020, 42(2): 33–37.

    LI K P, WEI C Z, LIANG X F, et al. Application of polyhedral mesh in numerical simulations of planing hulls[J]. Ship Science and Technology, 2020, 42(2): 33–37 (in Chinese).
    [24] 孙源, 卢晓平, 李井煜, 等. 滑行艇阻力计算方法对比研究[J]. 中国舰船研究, 2019, 14(1): 27–32.

    SUN Y, LU X P, LI J Y, et al. Comparative study on simulation of resistance for planing craft[J]. Chinese Journal of Ship Research, 2019, 14(1): 27–32 (in Chinese).
    [25] FALTINSEN O M. Hydrodynamics of high-speed marine vehicles[M]. New York: Cambridge University Press, 2005: 516-530.
  • ZG2417_en.pdf
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  113
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-09-14
  • 网络出版日期:  2022-06-10
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回