留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向循环载荷下加筋板极限承载性能分析

崔虎威 丁启印

崔虎威, 丁启印. 轴向循环载荷下加筋板极限承载性能分析[J]. 中国舰船研究, 2022, 17(4): 204–211 doi: 10.19693/j.issn.1673-3185.02400
引用本文: 崔虎威, 丁启印. 轴向循环载荷下加筋板极限承载性能分析[J]. 中国舰船研究, 2022, 17(4): 204–211 doi: 10.19693/j.issn.1673-3185.02400
CUI H W, DING Q Y. Analysis of ultimate load-bearing behavior of stiffened plate under axial cyclic loading[J]. Chinese Journal of Ship Research, 2022, 17(4): 204–211 doi: 10.19693/j.issn.1673-3185.02400
Citation: CUI H W, DING Q Y. Analysis of ultimate load-bearing behavior of stiffened plate under axial cyclic loading[J]. Chinese Journal of Ship Research, 2022, 17(4): 204–211 doi: 10.19693/j.issn.1673-3185.02400

轴向循环载荷下加筋板极限承载性能分析

doi: 10.19693/j.issn.1673-3185.02400
基金项目: 国家自然科学基金青年基金资助项目(52001040);重庆市教委科学技术研究项目(KJQN202000712);重庆市自然科学基金面上项目资助(cstc2021jcyj-msxmX0944);国家水运安全工程技术研究中心开放基金资助项目(A2021003)
详细信息
    作者简介:

    崔虎威,男,1986年生,博士,副教授。研究方向:船体结构极限强度评估。 Email:hwcui@cqjtu.edu.cn

    丁启印,男,1998年生,硕士生。研究方向:船体结构极限强度评估。Email:d1501023677@163.com

    通信作者:

    崔虎威

  • 中图分类号: U661.43

Analysis of ultimate load-bearing behavior of stiffened plate under axial cyclic loading

知识共享许可协议
轴向循环载荷下加筋板极限承载性能分析崔虎威,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为提高船体加筋板极限承载性能非线性数值模拟的准确性,研究理想弹塑性、各向同性强化及循环塑性Chaboche材料模型对加筋板极限状态时的塑性屈服分布及压缩、拉伸极限强度的影响。  方法  针对某同一尺寸加筋板,采用ANSYS软件开展轴向循环压缩、循环压缩−拉伸载荷下的极限承载性能非线性有限元数值模拟。  结果  结果显示,不同的材料属性对加筋板极限承载性能及极限状态时的塑性屈服分布具有显著影响;在开展船体加筋板极限承载性能非线性有限元数值模拟时,需要根据不同的载荷形式选择恰当的材料模型。  结论  所得结果对进一步研究船体结构在循环载荷作用下的极限强度特性及累积塑性破坏机理具有一定的参考价值。
  • 图  1  加筋板单元及加筋板结构示意图

    Figure  1.  Schematic diagram of stiffened plate unit and stiffened plate structure

    图  2  工况4和工况44下第1次压缩极限状态

    Figure  2.  First compressive limit state of Case 4 and Case 44

    图  3  工况4和工况44下第2次压缩极限状态

    Figure  3.  Second compressive limit state of Case 4 and Case 44

    图  4  工况4和工况44下第3次压缩极限状态

    Figure  4.  Third compressive limit state of Case 4 and Case 44

    图  5  平均应力−应变曲线

    Figure  5.  Average stress-strain curves

    图  6  工况6和工况66下第1次压缩极限状态

    Figure  6.  First compressive limit state of Case 6 and Case 66

    图  7  工况6和工况66下第2次压缩极限状态

    Figure  7.  Second compressive limit state of Case 6 and Case 66

    图  8  工况6和工况66下第3次压缩极限状态

    Figure  8.  Third compressive limit state of Case 6 and Case 66

    图  9  3次循环载荷下加筋板的平均应力−应变曲线

    Figure  9.  Average stress-strain curves of stiffened plate under three cycles loads

    图  10  10次循环载荷下加筋板的平均应力−应变曲线

    Figure  10.  Average stress-strain curves of stiffened plate under ten cycles loads

    表  1  加筋板单元模型尺寸

    Table  1.   Model size of stiffened plates

    参 数数值
    强横梁间距a/mm1 000
    相邻纵骨间距b/mm350
    厚度t/mm9
    加强筋
    (T型材)
    腹板高度hw /mm200
    腹板厚度tw /mm6.4
    面板宽度bf /mm140
    面板厚度tf /mm8.8
    下载: 导出CSV

    表  2  加筋板单元边界条件

    Table  2.   Boundary conditions of stiffened plates

    加筋板单元边界条件
    板格长边 Uy = Rx = Rz = 0
    板格短边 固定端:Ux = Ry = Rz = 0
    加载端:Ry = Rz = 0
    强横梁 与板相交处:Uz = 0
    与加强筋相交处:Uy = 0
    下载: 导出CSV

    表  3  不同网格尺寸加筋板单元极限强度数值计算结果

    Table  3.   Numerical calculation results of ultimate strength of stiffened plates with different grid sizes

    网格尺寸(长×宽)/mm极限强度/MPa
    50×50280.98
    25×25277.67
    12.5×12.5276.56
    下载: 导出CSV

    表  4  载荷模式与材料属性

    Table  4.   Loading mode and material properties

    工况编号幅值循环模式循环次数材料属性材料参数
    1 $2.5\varepsilon _{\rm{Y}}$ 单次压缩 理想弹塑性 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,$\varepsilon _{\rm{Y} } = 0.001\;5$
    2 $1.5\varepsilon _{\rm{Y}} - 2.0\varepsilon _{\rm{Y}} - 2.5\varepsilon _{\rm{Y}}$ 循环压缩 3
    11 $ 2.5\varepsilon _{\rm{Y}} $ 单次压缩 各向同性强化 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,G=$10\;000\;{\rm{MPa}}$,$\varepsilon _{\rm{Y}} = 0.001\;5$
    22 $1.5\varepsilon _{\rm{Y}} - 2.0\varepsilon _{\rm{Y}} - 2.5\varepsilon _{\rm{Y}}$ 循环压缩 3
    3 $4.0\varepsilon _{\rm{Y}}$ 单次压缩 理想弹塑性 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,$\varepsilon _{\rm{Y} } = 0.001\;5$
    4 $2.0\varepsilon _{\rm{Y}} - 3.0\varepsilon _{\rm{Y}} - 4.0\varepsilon _{\rm{Y}}$ 循环压缩 3
    33 $4.0\varepsilon _{\rm{Y}}$ 单次压缩 各向同性强化 E$ =207\;000\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =310.5\;{\rm{MPa}} $,G=$10\;000\;{\rm{MPa}}$,$\varepsilon _{\rm{Y}} = 0.001\;5$
    44 $2.0\varepsilon _{\rm{Y}} - 3.0\varepsilon _{\rm{Y}} - 4.0\varepsilon _{\rm{Y}}$ 循环压缩 3
    5 $ \pm 1.5\varepsilon _{\rm{Y}}$ 循环
    压缩−拉伸
    3 理想弹塑性 E$ =205\;800\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =285\;{\rm{MPa}} $,$\varepsilon _{\rm{Y}} = 0.001\;38$
    6 $ \pm 1.8\varepsilon _{\rm{Y}}$
    7 $ \pm 2.0\varepsilon _{\rm{Y}}$
    55 $ \pm 1.5\varepsilon _{\rm{Y}}$ 3 循环塑性 Chaboche模型,$\varepsilon _{\rm{Y}} = 0.001\;38$
    66 $ \pm 1.8\varepsilon _{\rm{Y}}$
    77 $ \pm 2.0\varepsilon _{\rm{Y}}$
    8 $ \pm 1.8\varepsilon _{\rm{Y}}$ 循环
    压缩−拉伸
    10 理想弹塑性 E$ =205\;800\;{\rm{MPa}} $,$ v=0.3 $,$\sigma _{\rm{Y}}$$ =285\;{\rm{MPa}} $,$\varepsilon _{\rm{Y}} = 0.001\;38 $
    88 $ \pm 1.8\varepsilon _{\rm{Y}}$ 循环塑性 Chaboche模型,$\varepsilon _{\rm{Y} } = 0.001\;38$
    下载: 导出CSV
  • [1] CALDWELL J B. Ultimate longitudinal strength[J]. Transactions of RINA, 1965, 107: 411–430.
    [2] IACS. Common structural rules for double hull oil tankers[S]. London: International Association of Classification Societies, 2006.
    [3] IACS. Common structural rules for bulk carriers[S]. London: International Association of Classification Societies, 2006.
    [4] ISO. Ships and marine technology-ship structures-Part 1: general requirements for their limit state assessment: ISO 18072-1[S]. Geneva, Switzerland: ISO, 2007.
    [5] IMO. Goal-based standards[S]. London, UK: International Maritime Organization, 2010.
    [6] IMO. Harmonised common structural rules (HCSR) for oil tankers and bulk carriers: MSC 87/5/6[S]. London, UK: International Association of Classification Societies (IACS), 2012.
    [7] MURRAY J M. Structural development of tankers[J]. European shipbuilding, 1953, 3(5).
    [8] J. H. 伊万斯. 船舶结构设计概念[M]. 桑国光, 陈穗康, 王兴飞, 等译. 北京: 国防工业出版社, 1985.

    EVANS J H. Concept of ship structure design[M]. SANG G G, CHEN S K, WANG X F, et al, trans. Beijing: National Defense Industry Press, 1985 (in Chinese).
    [9] FUJITA Y, NOMOTO T, YUGE K. Behavior of deformation of structural members under compressive and tensile loads (18 report)—On the buckling of a column subjected to repeated loading[J]. Journal of the Society of Naval Architects of Japan, 1984, 156: 346–354.
    [10] 黄震球. 关于海船船体总强度准则的一个新见解[J]. 武汉造船, 1993(6): 8–12.

    HUANG Z Q. A new view on the criterion of total hull strength for sea-going ships[J]. Wuhan Shipbuilding, 1993(6): 8–12 (in Chinese).
    [11] 黄震球, 陈齐树, 骆子夜. 循环弯曲载荷下船体梁的极限纵强度[J]. 中国造船, 1996(3): 87–95.

    HUANG Z Q, CHEN Q S, LUO Z Y. Ultimate longitudinal strength of ship's hull girder under cyclic bending loads[J]. Shipbuilding of China, 1996(3): 87–95 (in Chinese).
    [12] 黄震球. 船舶强度研究中的几个问题[J]. 武汉造船, 1999(3): 1–5.

    HUANG Z Q. Some problems in the study of ship's strength[J]. Wuhan Shipbuilding, 1999(3): 1–5 (in Chinese).
    [13] CUI H W, YANG P. Ultimate strength assessment of hull girder under cyclic bending based on smith's method[J]. Journal of Ship Research, 2018, 62(2): 77–88. doi: 10.5957/JOSR.170072
    [14] CUI H W, YANG P. Ultimate strength of hull plates under monotonic and cyclic uniaxial compression[J]. Journal of Ship Research, 2018, 62(3): 156–165. doi: 10.5957/JOSR.170080
    [15] CUI H W, YANG P. Ultimate strength and failure characteristics research on steel box girders under cyclic-bending moments[J]. Journal of Marine Science and Technology, 2018, 23(4): 926–936. doi: 10.1007/s00773-017-0521-3
    [16] CUI H W, YANG P. Cyclic behavior of stiffened plates under in-plane loading by numerical analysis[C]//Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, USA: ASME, 2014.
    [17] CUI H W, YANG P, CUI C. Experimental research on ultimate strength of plates under cyclic axial loads[C]//Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference. Kona, Big Island, Hawaii, USA: ISOPE, 2015.
    [18] JONES N. On the shakedown limit of a ship's hull girder[J]. Journal of Ship Research, 1975, 19(2): 118–121. doi: 10.5957/jsr.1975.19.2.118
    [19] GANNON L G, PEGG N G, SMITH M J, et al. Effect of residual stress shakedown on stiffened plate strength and behaviour[J]. Ships and Offshore Structures, 2013, 8(6): 638–652. doi: 10.1080/17445302.2012.664429
    [20] ZHANG X M, PAIK J K, JONES N. A new method for assessing the shakedown limit state associated with the breakage of a ship's hull girder[J]. Ships and Offshore Structures, 2016, 11(1): 92–104.
    [21] SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[C]//Proceedings of the International Symposium on PRADS. Tokyo, Japan: [s. n. ], 1977: 73-79.
    [22] HUGHES O F, PAIK J K. Ship structural analysis and design[M]. [s. l. ]: Society of Naval Architects and Marine Engineers, 2010.
    [23] LI S, HU Z Q, BENSON S. An analytical method to predict the buckling and collapse behaviour of plates and stiffened panels under cyclic loading[J]. Engineering Structures, 2019, 199: 109627. doi: 10.1016/j.engstruct.2019.109627
    [24] LEMAITRE J, CHABOCHE J L. Mechanics of solid materials[M]. Cambridge, UK: Cambridge University Press, 1990.
    [25] KROLO P, GRANDIĆ D, SMOLČIĆ Ž. Experimental and numerical study of mild steel behaviour under cyclic loading with variable strain ranges[J]. Advances in Materials Science and Engineering, 2016, 2016: 7863010.
  • ZG2400_en.pdf
    ZG2400_en.pdf
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  50
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-03
  • 修回日期:  2021-09-12
  • 网络出版日期:  2022-08-09
  • 刊出日期:  2022-08-20

目录

    /

    返回文章
    返回